
PROCESS VIRTUAL MEMORY
CS124 – Operating Systems
Spring 2024, Lecture 15

Programs and Memory
• Programs perform many interactions with memory…
• Accessing variables stored at specific memory locations
• Calls to functions that reside at specific memory locations

• Source code usually doesn’t include absolute addresses
• Rather, programs use symbols to refer to variables, functions, etc.

• At some point between compiling and running a program, addresses must be
assigned to functions and variables

• Ultimately, the operating system must specify how executable programs must
be laid out in memory
• The OS is responsible for loading a binary program and running it
• The OS is responsible for resolving references to shared libraries

• Specification is called application binary interface (ABI)

2

Programs and Memory (2)
• If the locations of functions and data can be set at compile time, the compiler

can generate absolute code
• Code that contains absolute addresses of functions and data

• If a program’s location can vary from invocation to invocation, compiler must
generate relocatable code
• The final binding of symbols to their addresses occurs at load time
• The loader updates the image of the binary program in memory, based on where the

program will actually be loaded
• To support this, programs must include details of what symbols are used in the program,

and where they are referenced in the binary
• Programs can also be compiled to produce position independent code
• All accesses are relative to the start of the binary in memory
• The program determines its own starting address at runtime

3

Programs and Memory (3)
• UNIX Executable and Linkable Format (ELF) supports both absolute and

relocatable binary programs
• On 32-bit Linux:
• “Executable object files” are positioned at an absolute starting address of 0x08048000
• “Relocatable object files” (.o files produced during compilation) include extra details

specifying the locations of function and memory accesses within the binary file
• Shared libraries are compiled with position-independent code

• Windows Portable Executable (PE) format also supports both absolute and
relocatable programs
• Windows programs are compiled relative to a preferred base address (absolute position)
• If a program can’t be loaded at its preferred base address for some reason, it can be

relocated at runtime (called “rebasing”)

4

Programs and Memory (4)
• The addresses used by programs are virtual addresses (logical addresses)
• The range of addresses a program uses is called its virtual address space

• The computer memory receives physical addresses
• The processor translates virtual addresses to physical addresses via the

Memory Management Unit (MMU)
• The nature of the processor’s MMU governs how this translation takes place

5

CPU

Program

logical
addresses Main

Memory

physical
addresses

MMU

Why Virtual Memory?
• Virtual memory has several benefits
• Frequently talk about process isolation:
• A process should be protected from access or manipulation by other processes on the

system, unless the process specifically allows collaboration with other processes
• By running processes in separate address spaces, it’s impossible for them to

access each other’s data
• (…unless the processes arrange to do so, of course)
• Each process’ virtual address space is mapped to a separate region of the computer’s

physical address space
• Only the kernel can directly manipulate this mapping; processes are not allowed to do so

6

Why Virtual Memory? (2)
• Virtual memory also greatly simplifies the design of the operating system’s

application binary interface (ABI):
• If every process has its own virtual address space, different processes can use the same

virtual addresses without a problem
• All binary programs can be laid out using the same basic structure and pattern
• e.g. 32-bit Linux:
• Program text always starts at virtual address 0x08048000
• Process stack always grows downward from 0xc0000000
• (ignoring Address-Space Layout Randomization / ASLR)

• Without virtual addressing, this would be impossible

7

Why Virtual Memory? (3)
• A third benefit for virtual memory is that it allows the OS to move processes

from memory to disk, and vice versa
• Mechanism is called swapping

• A program must be in main memory to run, but processes aren’t always ready
to run…
• When a process is blocked or suspended, OS can swap it from memory to a backing store

(e.g. a hard disk)
• Most or all of the process’ context is saved to disk

• When the scheduler switches to a new process, the dispatcher checks to see
if the process is in memory
• If not, the dispatcher can swap in the process and begin running it
• If there isn’t enough room, the dispatcher can swap out other processes from memory to the

backing store

8

Swapping
• With swapping, the total memory used by all processes can exceed the total

physical memory in the system
• Allows more programs to be run on the system at once, especially if many of these

programs are usually blocked on I/O
• (e.g. user applications waiting for user input)

• Unfortunately, swapping tends to take a lot of time
• Even though the backing store is usually a fast disk, still much slower than main memory

• Standard swapping involves moving entire processes into or out of physical
memory
• For a large process, can easily take several seconds or more!

• Operating systems don’t generally use standard swapping
• Instead, focus on swapping portions of processes out of memory
• Much faster than swapping entire processes out of memory

9

Swapping (2)
• Mobile processors generally have virtual memory support
• Mobile OSes usually don’t implement swapping
• Don’t have a large backing store to use for swapping
• Usually have a small flash memory with a limited number of writes

• Generally, when OS needs more memory for a process, it asks (or forces)
other processes to relinquish memory
• e.g. if a process is taking up too much memory, the OS kills it
• iOS tends to be aggressive in reclaiming memory from processes

• Android will write application state to flash memory before killing a process, so
that it can be restarted quickly

• In general, mobile application developers must be more careful about efficient
memory (and other resource) usage

10

MMU: Relocation
• A simple strategy for the memory management unit: relocate all virtual

addresses by a constant amount
• A relocation register holds a constant, which is added to logical addresses to generate

physical addresses
• phys_addr = virt_addr + relocation

• Additionally, can use a limit register to enforce the upper bound on the
process’ virtual address space
if virt_addr ≥ limit:
 raise fault
else:
 phys_addr = virt_addr + relocation

• Interaction with these registers is protected: only the kernel is allowed to read
and write these registers

11

MMU: Relocation (2)
• Using this strategy:
• Programs can be compiled with absolute addresses, e.g. starting at address 0 (or some

other common starting point)
• When a program is executed, the OS kernel can choose values for the corresponding

process’ relocation and limit registers based on the program’s memory requirements
• Processes are isolated from each other, and from the kernel
• Using this kind of address translation mechanism gives us a

contiguous memory allocation scheme
• Each process occupies a single contiguous region of physical memory
• Processes occupy adjacent regions of memory

12

Memory

kernel

MMU: Relocation (3)
• Contiguous memory allocation mechanism is prone to fragmentation of

physical memory
• As processes terminate and other processes are started, must determine where to place

each process in physical memory
• Placement strategies are same as always, e.g. best fit, first fit, …
• (OS can use another strategy too; in a moment…)

• This mechanism also requires standard swapping
• Not really possible to swap out parts of a process

• Does this virtual addressing mechanism allow shared memory areas?
• phys_addr = virt_addr + relocation

• Not without great difficulty:
• Two processes could be given overlapping regions, but it would complicate

other parts of process management

13

Memory

kernel

MMU: Segmentation
• A more advanced virtual address mapping technique is called segmentation
• Virtual addresses also include a segment number
• Virtual address = segment number + offset within segment

• Segment number used to find an entry in segment table
• Similar mechanism to the relocation register:
• Virtual offset is checked against the segment’s limit; if limit is exceeded, then the MMU

generates a fault
• Otherwise, virtual address is added to the segment’s

base value to get a physical address
• Each process has its own segment table
• Only manipulated by kernel

14

+ physical addresssegment offsetVirtual address:

limit
limit
limit
limit
…

base
base
base
base

…

Segment
Table

MMU: Segmentation (2)
• Segments can specify additional characteristics:
• Read-only vs. read-write, executable code vs. data
• MMU can also enforce these constraints

• Programs frequently contain different kinds of data
• Program text (read-only, executable)
• Constants/read-only data (read-only, not executable)
• Global variables (read-write, not executable)
• Memory heap
• Program stack (or stacks, for multithreaded programs)
• Shared libraries

• Segmentation matches more closely to
what programs actually require

15

limit
limit
limit
limit
…

segment offset +

base
base
base
base

…

physical addressVirtual address:

Segment
Table

MMU: Segmentation (3)
• Segmentation allows a program’s virtual memory to be non-contiguous in

physical memory
• Reduces physical memory fragmentation issues somewhat, but it will still become an issue

over time
• Also supports shared memory areas very easily
• Multiple processes can have segments with the same base and limit values, allowing

access to the same physical memory area
• Still not particularly great for swapping processes
• Could swap individual segments, but segments can

easily be very large (e.g. program text, memory heap)

16

limit
limit
limit
limit
…

segment offset +

base
base
base
base

…

physical addressVirtual address:

Segment
Table

Compaction
• Both relocation register and segmented memory models can suffer from

external fragmentation of physical memory
• OS can mitigate this by compacting physical memory:
• Move programs within physical memory to create a single contiguous area of free memory
• A program’s code and data can be moved within physical memory, then the base

address(es) can be adjusted to reflect new location
• Increases the number of processes that a system can run
• Clearly has a time impact on system performance
• Particularly when large programs or data areas must be moved

• OS can perform compaction when system load is lighter
• e.g. via a low-priority kernel thread

• Or, just force compaction when it can’t be avoided

17

MMU: Paging
• Paging is the most common technique for mapping virtual addresses to

physical addresses
• Physical and virtual memory are divided into fixed-size blocks of a particular size, e.g. 4KiB,

8KiB, etc.
• Blocks of physical memory are called frames
• Blocks of virtual memory are called pages
• Every virtual page is mapped to a corresponding frame in physical memory

18

virtual page number offset

virtual address

mapping physical page number offset

physical address

MMU: Paging (2)
• Paging causes no external fragmentation whatsoever
• Memory is always allocated or released in page-size chunks

• Will have some limited amount of internal fragmentation
• e.g. a process needs less than one page of space, but receives a whole page

• Motivates choice of a page size that is relatively small, but still large enough to
make swapping reasonably efficient
• Most allocations require a larger number of pages, reducing the actual internal

fragmentation costs

19

virtual page number offset

virtual address

mapping physical page number offset

physical address

MMU: Paging (3)
• Some systems have a very small mapping of virtual pages to physical pages
• Store this mapping in dedicated registers

• Example: DEC PDP-11
• Address space: 16 bits (64KB)
• Page size: 8KB (13 bits of addresses); only 8 pages total
• Virtual to physical page mapping is stored in 8 registers

20

virtual page number offset

virtual address

mapping physical page number offset

physical address

MMU: Paging (4)
• Most modern systems must support very large mappings in a page table
• An entry for every virtual page, specifying the corresponding physical page

• This page table is stored in main memory…
• Page table must be consulted for every memory access, including code and data access
• Main memory is very slow, e.g. ~100 clocks per access

• MMUs include Translation Lookaside Buffers (TLBs) to maximize performance
of address translation

21

virtual page number offset

virtual address

mapping physical page number offset

physical addressTLBs

MMU: Paging (5)
• During address translation, the MMU checks the TLBs to see if the mapping is

already cached
• Frequently will be, if the program has good locality of access

• If not, the MMU suffers a TLB miss
• Must look at the actual page table in memory to complete the address translation

• TLB misses can be resolved by hardware or by software
• If page table format is simple, hardware can look up the information
• Some CPUs can also fire a “TLB miss” interrupt to allow the OS kernel to resolve the TLB

miss (much slower, obviously…)

22

virtual page number offset

virtual address

mapping physical page number offset

physical addressTLBs

Simple Page Tables
• Simplest page table holds one entry for each virtual page
• As the size of the address space grows, the page table also becomes

prohibitively large
• Example: IA32 address space = 32 bits (4GB)
• Page size is 4KB; 1048576 entries in page table!
• Entries are 32 bits; table takes up 4MB

23

Physical Page OffsetPhysical Page Number
m-1 p p-1 0

Page Table

Physical Page Number
Physical Page Number

Physical Page Number
…

Physical Page Number

Virtual Page Number Virtual Page Offset
n-1 p p-1 0

Virtual Address

Physical Address

Page Table
Base Register

Hierarchical Paging
• To support larger address spaces, many systems use hierarchical paging
• Page table is a sparse data structure

• Virtual page number is broken into parts – each part is used to index a page
table at a different level

• If a memory area is unused, the corresponding page table entries are empty

24

Physical Page Offset
m-1 p p-1 0

VPN k Virtual Page Offset
n-1 p p-1 0Virtual Address

Physical Address

PTBR Level 1
Page Table

…

VPN 1 VPN 2 …

Level 2
Page Table

…

Level k
Page Table

…

…

Physical Page Number

Hierarchical Paging (2)
• Example: IA32 has 32-bit (4GB) address space
• 4KB pages; 12 bits of address are offset within page
• 20 bits of address specify virtual/physical page number

• IA32 has a two-level page table hierarchy
• Top 10 bits are used to index into the page directory
• Next 10 bits are used to index into a second-level page table

25

Physical Page Offset
31 12 11 0

Virtual Page Offset
31 11 0

Virtual Address

Physical Address

Page Directory
Base Register

Page
Directory

…

Page Directory Entry Page Table Entry

Page
Table

…

Physical Page Number

122122

Hierarchical Paging (3)
• Similarly, x86-64 has 48-bit address space
• Also 4KB pages; 12 bits of address are offset within page
• 36 bits of address specify virtual/physical page number

• x86-64 has a four-level page table hierarchy
• Each level has 9 bits to specify the page-table index

• Problem: as address space grows, number of accesses for page-table lookup
will clearly become prohibitive…

26

Physical Page Offset
31 12 11 0

Virtual Page Offset
31 11 0

Virtual Address

Physical Address

Page Directory
Base Register

Page
Directory

…

Page Directory Entry Page Table Entry

Page
Table

…

Physical Page Number

122122

Hashed Page Tables
• Some processors support hashed page tables
• Virtual page number is hashed to find corresponding physical page

• Obvious issue: hash collisions in the page table
• Must have some way of resolving hash collisions, e.g. overflow buckets or open addressing
• Must store both the virtual page number and the corresponding physical page number to

resolve collisions
• Systems with large address spaces can use clustered page tables
• Entries in the hash table hold multiple virtual/physical mappings
• e.g. a clustered page table might hold 16 virtual/physical mappings instead of just one

• Usually requires kernel intervention to resolve TLB misses
• More advanced CPUs can do this in microcode on the processor

27

Inverted Page Tables
• Another solution to the “large page table” problem is inverted page tables
• Instead of using a table that stores the virtual-to-physical mapping, store a physical-to-

virtual mapping instead
• With traditional page tables, each process has its own page table…
• With inverted page tables, the entire system has one page table containing the

mappings of all processes
• Problem: processes use virtual addresses…
• Very difficult to find a process’ virtual-to-physical mapping in the inverted page table
• Frequently, such systems use a hashing mechanism on top of the inverted page table, to

find the appropriate records
• (PowerPC and UltraSPARC processors use this approach.)

28

Inverted Page Tables (2)
• Inverted page tables have a second problem:

• Each physical page is mapped to one virtual page…
• Providing shared memory on such systems is complicated

• A simple solution:
• When the kernel dispatches to the current process, check if it has any

shared memory areas it is using
• If so, update the inverted page table to reflect that the physical pages are

owned by the current process
• When another process is scheduled, update the page table to show the

pages as owned by the next process
• Various other solutions to this problem as well…

29

Next Time
• Continue discussion of virtual memory and paging

30

