
FINAL EXAM REVIEW
CS121: Introduction to Relational Database Systems
Fall 2018 – Lecture 27

Final Exam Overview

¨ Unlimited time, multiple sittings
¤ Open book, notes, MySQL database, etc. (the usual)

¨ Primary topics: everything in the last half of the term
¤ DB schema design and Entity-Relationship Model
¤ Functional/multivalued dependencies, normal forms
¤ Also SQL DDL, DML, stored routines, hierarchies, etc.

¨ Questions will generally take this form:
¤ “Design a database to model such-and-such a system.”

n Create an E-R diagram for the database
n Translate to relational model and DDL
n Write some queries and/or stored routines against your schema

¤ Functional/multivalued dependency problems as well

2

Final Exam Admin Notes

¨ Final exam will be available this afternoon

¨ Due next Friday, December 14 at 5:00 pm

¨ Solution sets for all assignments except HW7 are
available
¤ HW7 solutions will be available over the weekend

3

Entity-Relationship Model

¨ Diagramming system for specifying DB schemas
¤ Can map an E-R diagram to the relational model

¨ Entity-sets (a.k.a. strong entity-sets)
¤ “Things” that can be uniquely represented
¤ Can have a set of attributes; must have a primary key

¨ Relationship-sets
¤ Associations between two or more entity-sets
¤ Can have descriptive attributes
¤ Relationships in a relationship-set are uniquely identified by

the participating entities, not the descriptive attributes
¤ Primary key of relationship depends on mapping cardinality

of the relationship-set

4

Entity-Relationship Model (2)

¨ Weak entity-sets
¤ Don’t have a primary key; have a discriminator instead
¤ Must be associated with a strong entity-set via an

identifying relationship
¤ Diagrams must indicate both weak entity-set and the

identifying relationship(s)
¨ Generalization/specialization of entity-sets

¤ Subclass entity-sets inherit attributes and relationships of
superclass entity-sets

¨ Schema design problems will likely involve most or all
of these things in one way or another

5

E-R Model Guidelines

¨ You should know:
¤ How to properly diagram each of these things
¤ Various constraints that can be applied, what they mean,

and how to diagram them
¤ How to map each E-R concept to the relational model

n Including rules for primary keys, candidate keys, etc.

¨ Final exam problem will require familiarity with all of
these points

¨ Make sure you are familiar with the various E-R
design issues, so you don’t make those mistakes!

6

E-R Model Attributes

¨ Attributes can be:
¤ Simple or composite
¤ Single-valued or multivalued
¤ Base or derived

¨ Attributes are listed in the entity-set’s rectangle
¤ Components of composite attributes are indented
¤ Multivalued attributes are enclosed with { }
¤ Derived attributes have a trailing ()

¨ Entity-set primary key attributes are underlined
¨ Weak entity-set partial key has dashed underline
¨ Relationship-set descriptive attributes aren’t a key!

7

Example Entity-Set

¨ customer entity-set

¨ Primary key:
¤ cust_id

¨ Composite attributes:
¤ name, address

¨ Multivalued attribute:
¤ phone_number

¨ Derived attribute:
¤ age

customer
cust_id
name
first_name
middle_initial
last_name

address
street
city
state
zip_code

{ phone_number }
birth_date
age ()

8

Example Relationship-Set

¨ Relationships are identified only by participating
entities
¤ Different relationships can have same value for a

descriptive attribute
¨ Example:

¤ A given pair of customer and loan entities can only have one
relationship between them via the borrower relationship-set

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

9

E-R Model Constraints

¨ E-R model can represent several constraints:
¤ Mapping cardinalities
¤ Key constraints in entity-sets
¤ Participation constraints

¨ Make sure you know when and how to apply these
constraints

¨ Mapping cardinalities:
¤ “How many other entities can be associated with an entity,

via a particular relationship set?”
¤ Choose mapping cardinality based on the rules of the

enterprise being modeled

10

Mapping Cardinalities

¨ In relationship-set diagrams:
¤ arrow towards entity-set represents “one”
¤ line with no arrow represents “many”
¤ arrow is always towards the entity-set

¨ Example: many-to-many mapping
¤ The way that most banks work…

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

11

Mapping Cardinalities (2)

¨ One-to-many mapping:

¨ One-to-one mapping:

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

12

Relationship-Set Primary Keys

¨ Relationship-set R, involving entity-sets A and B
¨ If mapping is many-to-many, primary key is:
primary_key(A) ∪ primary_key(B)

¨ If mapping is one-to-many, primary_key(B) is primary
key of relationship-set

¨ If mapping is many-to-one, primary_key(A) is primary
key of relationship-set

¨ If mapping is one-to-one, use primary_key(A) or
primary_key(B) for primary key
¤ Enforce both as candidate keys in the implementation

schema!

13

Participation Constraints

¨ Given entity-set E, relationship-set R
¨ If every entity in E participates in at least one

relationship in R, then:
¤ E’s participation in R is total

¨ If only some entities in E participate in relationships in
R, then:
¤ E’s participation in R is partial

¨ Use total participation when enterprise requires all
entities to participate in at least one relationship

14

Diagramming Participation

¨ Can indicate participation constraints in entity-
relationship diagrams
¤ Partial participation shown with a single line
¤ Total participation shown with a double line

customer
cust_id
name
street_address
city

loan
loan_id
amount

access_date

borrower

15

Weak Entity-Sets

¨ Weak entity-sets don’t have a primary key
¤ Must be associated with an identifying entity-set
¤ Association called the identifying relationship
¤ If you use weak entity-sets, make sure you also include both

of these things!
¨ Every weak entity is associated with an identifying

entity
¤ Weak entity’s participation in relationship-set is total

¨ Weak entities have a discriminator (partial key)
¤ Need to distinguish between the weak entities
¤ Weak entity-set’s primary key is partial key combined with

identifying entity-set’s primary key

16

Diagramming Weak Entity-Sets

¨ In E-R model, can only tell that an entity-set is weak if
it has a discriminator instead of a primary key
¤ Discriminator attributes have a dashed underline

¨ Identifying relationship to owning entity-set indicated
with a double diamond
¤ One-to-many mapping
¤ Total participation on weak entity side

check_txn

check
check_number
check_date
recipient
amount
memo

account
account_number
balance

17

Weak Entity-Set Variations

¨ Can run into interesting variations:
¤ A strong entity-set that owns several weak entity-sets
¤ A weak entity-set that has multiple identifying entity-sets

¨ Example:

¤ Other (possibly better) ways of modeling this too, e.g. make
submission a strong entity-set with its own ID

¨ Don’t forget: weak entity-sets can also have their
own non-identifying relationship-sets, etc.

submission
version
submit_date
data

student
username

assignment
shortname
due_date
url

completesubmit

18

Conversion to Relation Schemas

¨ Converting strong entity-sets is simple
¤ Create a relation schema for each entity-set
¤ Primary key of entity-set is primary key of relation schema

¨ Components of compound attributes are included
directly in the schema
¤ Relational model requires atomic attributes

¨ Multivalued attributes require a second relation
¤ Includes primary key of entity-set, and “single-valued”

version of attribute
¨ Derived attributes normally require a view

¤ Must compute the attribute’s value

19

Schema Conversion Example

¨ customer entity-set:

¨ Maps to schema:
customer(cust_id, name, street, city, state, zipcode)
customer_emails(cust_id, email)

¨ Primary-key attributes come first in attribute lists!

customer
cust_id
name
address
street
city
state
zip_code

{ email }

20

Schema Conversion Example (2)

¨ Bank loans:

¨ Maps to schema:
customer(cust_id, name, street_address, city)
loan(loan_id, amount)
borrower(loan_id, cust_id, access_date)

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

21

Schema Conversion Example (3)

¨ Checking accounts:

¨ Maps to schema:
account(account_number, balance)
check(account_number, check_number,
check_date, recipient, amount, memo)

¤ No schema for identifying relationship!

check_txn

check
check_number
check_date
recipient
amount
memo

account
account_number
balance

22

Generalization and Specialization

¨ Use generalization when multiple entity-sets represent
similar concepts

¨ Example: checking and
savings accounts

¨ Attributes and relationships are inherited
¤ Subclass entity-sets can also have own relationships

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

23

Specialization Constraints

¨ Disjointness constraint, a.k.a. disjoint specialization:
¤ Every entity in superclass entity-set can be a member of

at most one subclass entity-set
¤ One arrow split into multiple parts

shows disjoint specialization
¨ Overlapping specialization:

¤ An entity in the superclass entity-set
can be a member of zero or more
subclass entity-sets

¤ Multiple separate arrows show
overlapping specialization

instructor
rank

secretary
hours_per_week

person
ID
name
address

employee
salary

student
tot_credits

24

Specialization Constraints (2)

¨ Completeness constraint:
¤ Total specialization: every entity

in superclass entity-set must be a
member of some subclass entity-set

¤ Partial specialization is default
¤ Show total specialization with

“total” annotation on arrow
¨ Membership constraint:

¤ What makes an entity a member of a subclass?
¤ Attribute-defined vs. user-defined specialization

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

25

Generalization Example

¨ Checking and savings accounts:

¨ One possible mapping
to relation schemas:
account(acct_id, acct_type, balance)
checking(acct_id, overdraft_limit)
savings(acct_id, min_balance, interest_rate)

¨ Be familiar with other mappings, and their tradeoffs

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

26

Generalization and Relationships

¨ If all subclass entity-sets have a relationship with a particular
entity-set:
¤ e.g. all accounts are associated with customers
¤ Don’t create a separate relationship for each subclass entity-set!

customer

checker

saver

Creates unnecessary
complexity in the

database schema.

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

27

Generalization, Relationships (2)

¨ If all subclass entity-sets have a relationship with a
particular entity-set:
¤ Create a relationship with superclass entity-set
¤ Subclass entity-sets inherit this relationship

Both checking and
savings accounts

inherit relationships
with customers.

customerdepositor

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

28

Generalization, Relationships (3)

¨ Finally, ask yourself:
¤ “What constraints should I enforce on depositor ?”
¤ All accounts have to be associated with at least one

customer
¤ A customer may have zero or more accounts
¤ account has total participation in depositor

customer

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

depositor

29

Generalization, Relationships (4)

¨ Subclass entity-sets can have their own relationships
¤ e.g. associate every checking account with one specific

“overdraft” savings account
¤ What constraints on overdraft ?

In this specific case, could also
make overdraft_limit a descriptive
attribute on overdraft.

overdraft

customer

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

depositor

30

Normal Forms

¨ Normal forms specify “good” patterns for database
schemas

¨ First Normal Form (1NF)
¤ All attributes must have atomic domains
¤ Happens automatically in E-R to relational model conversion

¨ Second Normal Form (2NF) of historical interest
¤ Don’t need to know about it

¨ Higher normal forms use more formal concepts
¤ Functional dependencies: BCNF, 3NF
¤ Multivalued dependencies: 4NF

31

Normal Form Notes

¨ Make sure you can:
¤ Identify and state functional dependencies and multivalued

dependencies in a schema
¤ Determine if a schema is in BCNF, 3NF, 4NF
¤ Normalize a database schema

¨ Functional dependency requirements:
¤ Apply rules of inference to functional dependencies
¤ Compute the closure of an attribute-set
¤ Compute Fc from F, without any programs this time J
¤ Identify extraneous attributes

32

Functional Dependencies

¨ Given a relation schema R with attribute-sets a, b Í
R
¤ The functional dependency a ® b holds on r(R) if
á " t1, t2 Î r : t1[a] = t2[a] : t1[b] = t2[b] ñ

¤ If a is the same, then b must be the same too

¨ Trivial functional dependencies hold on all possible
relation values
¤ a ® b is trivial if b Í a

¨ A superkey functionally determines the schema
¤ K is a superkey if K® R

33

Inference Rules

¨ Armstrong’s axioms:
¤ Reflexivity rule:

If a is a set of attributes and b Í a, then a ® b holds.
¤ Augmentation rule:

If a ® b holds, and g is a set of attributes, then ga ® gb holds.
¤ Transitivity rule:

If a ® b holds, and b ® g holds, then a ® g holds.

¨ Additional rules:
¤ Union rule:

If a ® b holds, and a ® g holds, then a ® bg holds.
¤ Decomposition rule:

If a ® bg holds, then a ® b holds and a ® g holds.
¤ Pseudotransitivity rule:

If a ® b holds, and gb ® d holds, then ag ® d holds.

34

Sets of Functional Dependencies

¨ A set F of functional dependencies
¨ F+ is closure of F

¤ Contains all functional dependencies in F
¤ Contains all functional dependencies that can be logically

inferred from F, too
¤ Use Armstrong’s axioms to generate F+ from F

¨ Fc is canonical cover of F
¤ F logically implies Fc, and Fc logically implies F
¤ No functional dependency has extraneous attributes
¤ All dependencies have unique left-hand side

¨ Review how to test if an attribute is extraneous!

35

Boyce-Codd Normal Form

¨ Eliminates all redundancy that can be discovered
using functional dependencies

¨ Given:
¤ Relation schema R
¤ Set of functional dependencies F

¨ R is in BCNF with respect to F if:
¤ For all functional dependencies a ® b in F+, where
a Í R and b Í R, at least one of the following holds:
n a ® b is a trivial dependency
n a is a superkey for R

¨ Is not dependency-preserving
¤ Some dependencies in F may not be preserved

36

Third Normal Form

¨ A dependency-preserving normal form
¤ Also allows more redundant information than BCNF

¨ Given:
¤ Relation schema R, set of functional dependencies F

¨ R is in 3NF with respect to F if:
¤ For all functional dependencies a ® b in F+, where
a Í R and b Í R, at least one of the following holds:
n a ® b is a trivial dependency
n a is a superkey for R
n Each attribute A in b – a is contained in a candidate key for R

¨ Can generate a 3NF schema from Fc

37

Multivalued Dependencies

¨ Functional dependencies cannot represent multivalued
attributes
¤ Can’t use functional dependencies to generate normalized

schemas including multivalued attributes
¨ Multivalued dependencies are a generalization of

functional dependencies
¤ Represented as a b

¨ More complex than functional dependencies!
¤ Real-world usage is usually very simple

¨ Fourth Normal Form
¤ Takes multivalued dependencies into account

®®

38

Multivalued Dependencies (2)

¨ Multivalued dependency a b holds on R if, in any
legal relation r(R):
¤ For all pairs of tuples t1 and t2 in r such that
t1[a] = t2[a]

¤ There also exists tuples t3 and t4 in r such that:
n t1[a] = t2[a] = t3[a] = t4[a]
n t1[b] = t3[b] and t2[b] = t4[b]
n t1[R – b] = t4[R – b] and t2[R – b] = t3[R – b]

¨ Pictorially:

®®

a b R – (a ∪ b)
t1
t2

a1…ai
a1…ai

ai+1…aj
bi+1…bj

aj+1…an
bj+1…bn

t3
t4

a1…ai
a1…ai

ai+1…aj
bi+1…bj

bj+1…bn
aj+1…an

39

Trivial Multivalued Dependencies

¨ a b is a trivial multivalued dependency on R if all
relations r(R) satisfy the dependency

¨ Specifically, a b is trivial if b Í a, or if
a ∪ b = R

¨ Note that a multivalued dependency’s trivial-ness
may depend on the schema!
¤ A B is trivial on R1(A, B), but it is not trivial on R2(A, B, C)
¤ A major difference between functional and multivalued

dependencies!
¤ For functional dependencies: a ® b is trivial only if b Í a

®®

®®

®®

40

Functional & Multivalued Dependencies

¨ Functional dependencies are also multivalued
dependencies
¤ If a ® b, then a b too
¤ Additional caveat: each value of a has at most one

associated value for b

¨ Don’t state functional dependencies as multivalued
dependencies!
¤ Much easier to reason about functional dependencies!

®®

41

Functional & Multivalued Dependencies (2)

¨ Given a relation R1(a, b) with a ® b and a Ç b = Æ
¤ What is the key of R1?
¤ R1(a, b)

¨ Given a relation R2(a, b) with a b and a Ç b = Æ
¤ What is the key of R2?
¤ R2(a, b) – i.e. all attributes a È b are part of the key of R2

¨ This is why we don’t state functional dependencies
as multivalued dependencies

®®

42

Fourth Normal Form

¨ Given:
¤ Relation schema R
¤ Set of functional and multivalued dependencies D

¨ R is in 4NF with respect to D if:
¤ For all multivalued dependencies a b in D+, where
a Î R and b Î R, at least one of the following holds:
n a b is a trivial multivalued dependency
n a is a superkey for R

¤ Note: If a ® b then a b
¨ A database design is in 4NF if all schemas in the

design are in 4NF

®®

®®

®®

43

