FINAL EXAM REVIEW

Final Exam Overview

Unlimited time, multiple sittings
Open book, notes, MySQL database, etc. (the usual)
Primary topics: everything in the last half of the term
DB schema design and Entity-Relationship Model

Functional /multivalued dependencies, normal forms
Also SQL DDL, DML, stored routines, hierarchies, etc.

Quuestions will generally take this form:

“Design a database to model such-and-such a system.”
Create an E-R diagram for the database
Translate to relational model and DDL
Write some queries and /or stored routines against your schema

Functional /multivalued dependency problems as well

Final Exam Admin Notes

Final exam will be available this afternoon

Due next Friday, December 14 at 5:00 pm

Solution sets for all assignments except HW7 are
available

HW7/ solutions will be available over the weekend

Entity-Relationship Model

Diagramming system for specifying DB schemas

Can map an E-R diagram to the relational model
Entity-sets (a.k.a. strong entity-sets)

“Things” that can be uniquely represented

Can have a set of attributes; must have a primary key
Relationship-sets

Associations between two or more entity-sets
Can have descriptive attributes

Relationships in a relationship-set are uniquely identified by
the participating entities, not the descriptive attributes

Primary key of relationship depends on mapping cardinality
of the relationship-set

Entity-Relationship Model (2)

Weak entity-sets

Don’t have a primary key; have a discriminator instead

Must be associated with a strong entity-set via an
identifying relationship

Diagrams must indicate both weak entity-set and the
identifying relationship(s)

Generalization/specialization of entity-sets

Subclass entity-sets inherit attributes and relationships of
superclass entity-sets

Schema design problems will likely involve most or all
of these things in one way or another

E-R Model Guidelines

You should know:
How to properly diagram each of these things

Various constraints that can be applied, what they mean,
and how to diagram them

How to map each E-R concept to the relational model

Including rules for primary keys, candidate keys, etc.
Final exam problem will require familiarity with all of
these points

Make sure you are familiar with the various E-R
design issues, so you don’t make those mistakes!

E-R Model Attributes

Attributes can be:

Simple or composite
Single-valued or multivalued
Base or derived

Attributes are listed in the entity-set’s rectangle

Components of composite attributes are indented
Multivalued attributes are enclosed with { }
Derived attributes have a trailing ()

Entity-set primary key attributes are underlined
Weak entity-set partial key has dashed underline
Relationship-set descriptive attributes aren’t a key!

Example Entity-Set

customer entity-set

Primary key:

cust_id

Composite attributes:
name, address

Multivalued attribute:

phone_number

Derived attribute:
age

customer

cust id
name
first_name
middle _initial
last_name
address
Street
city
State
Zip _code
{ phone _number}
birth_date

age ()

Example Relationship-Set

Relationships are identified only by participating
entities

Different relationships can have same value for a
descriptive attribute

Example:
P access _date
customer
cust id /\ loan
name borrower loan_id
Street _address amount
city

A given pair of customer and loan entities can only have one
relationship between them via the borrower relationship-set

E-R Model Constraints

E-R model can represent several constraints:
Mapping cardinalities
Key constraints in entity-sets

Participation constraints

Make sure you know when and how to apply these
constraints

Mapping cardinalities:

“How many other entities can be associated with an entity,
via a particular relationship sete”

Choose mapping cardinality based on the rules of the
enterprise being modeled

Mapping Cardinalities

In relationship-set diagrams:
arrow towards entity-set represents “one”
line with no arrow represents “many”
arrow is always towards the entity-set
Example: many-to-many mapping
The way that most banks work...

access_date

customer :
cust id /\ loan
name borrower loan_id
Street _address amount
city

Mapping Cardinalities (2)

One-to-many mapping:

access _date

customer :
cust id /\ loan
name < borrower loan_id
Street _address amount
city

One-to-one mapping:

access _date

customer :

cust id loan
name borrower loan_id
Street _address amount

city

Relationship-Set Primary Keys

Relationship-set R, involving entity-sets A and B
If mapping is many-to-many, primary key is:
primary_key(A) U primary_key(B)
If mapping is one-to-many, primary_key(B) is primary
key of relationship-set
If mapping is many-to-one, primary_key(A) is primary
key of relationship-set
If mapping is one-to-one, use primary_key(A) or
primary_key(B) for primary key
Enforce both as candidate keys in the implementation
schemal!

Participation Constraints

Given entity-set E, relationship-set R

If every entity in E participates in at least one
relationship in R, then:

E’s participation in R is total
If only some entities in E participate in relationships in
R, then:

E’s participation in R is partial
Use total participation when enterprise requires all
entities to participate in at least one relationship

Diagramming Participation

Can indicate participation constraints in entity-
relationship diagrams

Partial participation shown with a single line

Total participation shown with a double line

access _date

customer :
cust id /‘\ loan
name borrower > loan_id
Street _address amount
city

Weak Entity-Sets

Weak entity-sets don’t have a primary key
Must be associated with an identifying entity-set
Association called the identifying relationship

If you use weak entity-sets, make sure you also include both
of these things!

Every weak entity is associated with an identifying
entity
Weak entity’s participation in relationship-set is total
Weak entities have a discriminator (partial key)
Need to distinguish between the weak entities

Weak entity-set’s primary key is partial key combined with
identifying entity-set’s primary key

Diagramming Weak Entity-Sets

In E-R model, can only tell that an entity-set is weak if
it has a discriminator instead of a primary key

Discriminator attributes have a dashed underline
|dentifying relationship to owning entity-set indicated
with a double diamond

One-to-many mapping

Total participation on weak entity side

check

account check_number
account number |4 . ChQle_date
balance recipient
amount

memo

Weak Entity-Set Variations

Can run into interesting variations:
A strong entity-set that owns several weak entity-sets
A weak entity-set that has multiple identifying entity-sets

Example:
submission
student ,
version
username submit_date
data

assignment

(,

shortname

due date
url

Other (possibly better) ways of modeling this too, e.g. make
submission a strong entity-set with its own ID

Don’t forget: weak entity-sets can also have their
own non-identifying relationship-sets, etc.

Conversion to Relation Schemas

Converting strong entity-sets is simple
Create a relation schema for each entity-set

Primary key of entity-set is primary key of relation schema

Components of compound attributes are included
directly in the schema

Relational model requires atomic attributes

Multivalued attributes require a second relation

Includes primary key of entity-set, and “single-valued”
version of attribute

Derived attributes normally require a view

Must compute the attribute’s value

Schema Conversion Example

customer entity-set: custorner

cust _id
name
address
Street
city
State
Zip _code
{ email }

Maps to schema:
customer(cust_id, name, street, city, state, zipcode)

customer_emails(cust_id, email)

Primary-key attributes come first in attribute lists!

Schema Conversion Example (2)

Bank loans:

access _date

customer :
cust id /\ loan
name < borrower loan_id
Street _address amount
city

Maps to schema:

customer(cust_id, name, street_address, city)

loan(loan _id, amount)

borrower(loan id, cust_id, access_date)

Schema Conversion Example (3)

Checking accounts:

check
account check_number
account number |4 : check_date
balance recipient
amount
memo

Maps to schema:
account(account _number, balance)

check(account _number, check number,
check_date, recipient, amount, memo)

No schema for identifying relationship!

Generalization and Specialization

Use generalization when multiple entity-sets represent

similar concepts

Exqmple: checking and account
savings accounts acct id
acct _type
balance
Zf tota/
checking savings

overdraft limit

min_balance
interest rate

Attributes and relationships are inherited
Subclass entity-sets can also have own relationships

Specialization Constraints

Disjointness constraint, a.k.a. disjoint specialization:

Every entity in superclass entity-set can
at most one subclass entity-set

be a member of

One arrow split into multiple parts IDperSO”

shows disjoint specialization name
Overlapping specialization: e

An entity in the superclass entity-set / \\

can be a member of zero or more employee| | student

subclass entity-sets Salal'f’y tot_credits

Multiple separate arrows show

overlapping specialization pr—— p——

rank hours _per _week

Specialization Constraints (2)

Completeness constraint:

account

Total specialization: every entity acct_id
. | tit t tb acct _type
in superclass entity-set must be a balance
member of some subclass entity-set lf --------- total
Partial specialization is default
Show total specialization with checking savings
T ” . overdraft_limit min_balance

total” annotation on arrow interest rato

Membership constraint:

What makes an entity a member of a subclass?

Attribute-defined vs. user-defined specialization

Generalization Example

Checking and savings accounts: account

acct id
acct _type

balance

checking

One possible mapping overdraft_limit

to relation schemas:

account(acct id, acct_type, balance)
checking(acct id, overdraft_limit)
savings(acct _id, min_balance, interest_rate)

savings

min_balance
interest rate

Be familiar with other mappings, and their tradeoffs

Generalization and Relationships

If all subclass entity-sets have a relationship with a particular

entity-set:

e.g. all accounts are associated with customers

Don'’t create a separate relationship for each subclass entity-set!

account

acct id
acct _type
balance

checking

savings

overdraft limit

min_balance
interest rate

Creates unnecessary
complexity in the
database schema.

saver customer
[

checker

Generalization, Relationships (2)

If all subclass entity-sets have a relationship with a
particular entity-set:

Create a relationship with superclass entity-set

Subclass entity-sets inherit this relationship

account

acct id W customer
acct _type

balance

Both checking and
savings accounts
checking savings inherit relationships

overdraft_limit min_balance with customers.
interest rate

Generalization, Relationships (3)

Finally, ask yourself:
“What constraints should | enforce on depositor ¢”

All accounts have to be associated with at least one
customer

A customer may have zero or more accounts
account has total participation in depositor

account

acct id —\Wp customer
acct _type

balance

checking savings

overdraft_limit min_balance
interest rate

Generalization, Relationships (4)

Subclass entity-sets can have their own relationships

e.g. associate every checking account with one specific
“overdraft” savings account

What constraints on overdraft ¢

account

acct_id ‘W customer
acct _type

balance

checking savings
overdraft_limit min_balance In this specific case, could also

inter eit—r ate make overdraft_limit a descriptive
attribute on overdraft.

overdraft

Normal Forms

Normal forms specify “good” patterns for database
schemas

First Normal Form (1NF)

All attributes must have atomic domains

Happens automatically in E-R to relational model conversion
Second Normal Form (2NF) of historical interest

Don’t need to know about it

Higher normal forms use more formal concepts
Functional dependencies: BCNF, 3NF
Multivalued dependencies: 4NF

Normal Form Notes

Make sure you can:

|dentify and state functional dependencies and multivalued
dependencies in a schema

Determine if a schema is in BCNF, 3NF, 4NF

Normalize a database schema

Functional dependency requirements:
Apply rules of inference to functional dependencies
Compute the closure of an attribute-set

Compute F_ from F, without any programs this time ©

|dentify extraneous attributes

Functional Dependencies

Given a relation schema R with attribute-sets o, B =
R

The functional dependency a — 3 holds on r(R) if

(V 1, ty er:tla] = Hla] : 4[B] = H,[B])

If o is the same, then B must be the same too
Trivial functional dependencies hold on all possible
relation values

o — P is trivial if B C o
A superkey functionally determines the schema

K is a superkey if K - R

Inference Rules

Armstrong’s axioms:
Reflexivity rule:
If o is a set of attributes and B < «, then oo — 3 holds.
Augmentation rule:
If oo = B holds, and y is a set of attributes, then Yoo — v holds.
Transitivity rule:
If o — P holds, and 3 — vy holds, then oo — ¥ holds.

Additional rules:
Union rule:
If oo = B holds, and oo — 7 holds, then a. — [y holds.
Decomposition rule:
If o — By holds, then oo — 3 holds and oo — 7 holds.
Pseudotransitivity rule:
If o — P holds, and Y3 — 0 holds, then oy — & holds.

Sets of Functional Dependencies

A set F of functional dependencies

F* is closure of F
Contains all functional dependencies in F

Contains all functional dependencies that can be logically
inferred from F, too

Use Armstrong’s axioms to generate F™ from F
F_is canonical cover of F
F logically implies F_, and F_ logically implies F
No functional dependency has extraneous attributes
All dependencies have unique left-hand side

Review how to test if an attribute is extraneous!

Boyce-Codd Normal Form

Eliminates all redundancy that can be discovered
using functional dependencies

Given:
Relation schema R
Set of functional dependencies F

R is in BCNF with respect to F if:

For all functional dependencies oo — P in F*, where
o C R and 3 < R, at least one of the following holds:

o — B is a trivial dependency
a is a superkey for R

Is not dependency-preserving
Some dependencies in F may not be preserved

Third Normal Form

A dependency-preserving normal form

Also allows more redundant information than BCNF

Given:

Relation schema R, set of functional dependencies F

R is in 3NF with respect to F if:
For all functional dependencies oo — P in F*, where
o C R and 3 < R, at least one of the following holds:
o — B is a trivial dependency

a is a superkey for R
Each attribute A in 3 — a is contained in a candidate key for R

Can generate a 3NF schema from F_

Multivalued Dependencies

Functional dependencies cannot represent multivalued
attributes

Can’t use functional dependencies to generate normalized
schemas including multivalued attributes

Multivalued dependencies are a generalization of
functional dependencies

Represented as o —>> [
More complex than functional dependencies!

Real-world usage is usually very simple

Fourth Normal Form
Takes multivalued dependencies into account

Multivalued Dependencies (2)

Multivalued dependency o.—» 3 holds on R if, in any
legal relation r(R):
For all pairs of tuples t;, and t, in r such that
hla] = tlal
There also exists tuples t; and t, in r such that:
hlal = tla] = t[a] = t[a]
h[B] = t;[B] and t,[B] = t,[[3]
h[R — B] = t,[R — B] and t,[R — B] = t3[R — [3]

Pictorially: o B R— (0. U B)
ty | a4...a; | @jq...3 Qjq...8p
t2 a1---ai bi+1...bj bj+1 ..bn
ty | @4...a; | @jq...8; bjsy...by,
ty | @4...@; | biq...b; @j41...48

Trivial Multivalued Dependencies

o —» 3 is a trivial multivalued dependency on R if all
relations r(R) satisfy the dependency

Specifically, a —> 3 is trivial if B < a, or if
oUP=R

Note that a multivalued dependency’s trivial-ness
may depend on the schemal!

A —> B is trivial on R,(A, B), but it is not trivial on R,(A, B, C)

A major difference between functional and multivalued
dependencies!

For functional dependencies: o — [is trivial only if B < o

Functional & Multivalued Dependencies

Functional dependencies are also multivalued
dependencies
If o — B, then o —> P too

Additional caveat: each value of o has at most one
associated value for [3

Don’t state functional dependencies as multivalued
dependencies!

Much easier to reason about functional dependencies!

Functional & Multivalued Dependencies (2)

Given a relation R,(a, B) witha > Banda N =D
What is the key of R,?¢

Ri(e,)

Given a relation R,(at, B) witha —>» Banda N B =
What is the key of R,¢
R,(a, B) —i.e. all attributes o0 U B are part of the key of R,

This is why we don’t state functional dependencies
as multivalued dependencies

Fourth Normal Form

Given:
Relation schema R

Set of functional and multivalued dependencies D

R is in 4ANF with respect to D if:

For all multivalued dependencies a—» [3 in D*, where
o € R and B € R, at least one of the following holds:

o.—» [is a trivial multivalued dependency
a is a superkey for R

Note: If oo — [3 then a—> 3

A database design is in 4NF if all schemas in the
design are in 4NF

