FUNCTIONAL DEPENDENCY THEORY II

CS121: Relational Databases
Fall 2018 - Lecture 20

Canonical Cover

\square A canonical cover F_{c} for F is a set of functional dependencies such that:
$\square F$ logically implies all dependencies in F_{c}
$\square F_{\mathrm{c}}$ logically implies all dependencies in F
\square Can't infer any functional dependency in F_{c} from other dependencies in F_{c}
\square No functional dependency in F_{c} contains an extraneous attribute
\square Left side of all functional dependencies in F_{c} are unique

- There are no two dependencies $\alpha_{1} \rightarrow \beta_{1}$ and $\alpha_{2} \rightarrow \beta_{2}$ in F_{c} such that $\alpha_{1}=\alpha_{2}$

Extraneous Attributes

\square Given a set F of functional dependencies
\square An attribute in a functional dependency is extraneous if it can be removed from F without changing F^{+}
\square Formally: given F, and $\alpha \rightarrow \beta$

- If $A \in \alpha$, and F logically implies $(F-\{\alpha \rightarrow \beta\}) \cup\{(\alpha-A) \rightarrow \beta\}$, then A is extraneous
\square If $A \in \beta$, and $(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$ logically implies F, then A is extraneous
- i.e. generate a new set of functional dependencies F^{\prime} by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow(\beta-A)$
- See if F^{\prime} logically implies F

Testing Extraneous Attributes

\square Given relation schema R, and a set F of functional dependencies that hold on R
\square Attribute A in $\alpha \rightarrow \beta$
\square If $A \in \alpha$ (i.e. A is on left side of the dependency), then let $\gamma=\alpha-\{A\}$
\square See if $\gamma \rightarrow \beta$ can be inferred from F
\square Compute γ^{+}under F

- If $\beta \subseteq \gamma^{+}$then A is extraneous in α
\square e.g. if $A B \rightarrow C$ and you want to see if B is extraneous, can see if you can infer $A \rightarrow C$ from F

Testing Extraneous Attributes (2)

\square Given relation schema R, and a set F of functional dependencies that hold on R
\square Attribute A in $\alpha \rightarrow \beta$
\square If $A \in \beta$ (on right side of the dependency), then try the altered set F^{\prime}

- $F^{\prime}=(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$
\square See if $\alpha \rightarrow A$ can be inferred from F^{\prime}
\square Compute α^{+}under F^{\prime}
- If α^{+}includes A then A is extraneous in β
\square e.g. if $A \rightarrow B C$ and you want to see if B is extraneous, you can already infer $A \rightarrow B$ from this dependency
\square Must generate F^{\prime} with only $A \rightarrow C$, and if you can infer $A \rightarrow B$ from F^{\prime}, then B was indeed extraneous

Computing Canonical Cover

\square A simple way to compute the canonical cover of F
$F_{\mathrm{c}}=F$
repeat
apply union rule to replace dependencies in F_{c} of form
$\alpha_{1} \rightarrow \beta_{1}$ and $\alpha_{1} \rightarrow \beta_{2}$ with $\alpha_{1} \rightarrow \beta_{1} \beta_{2}$
find a functional dependency $\alpha \rightarrow \beta$ in F_{c} with an extraneous attribute
/* Use F_{c} for the extraneous attribute test, not $F!!!$ */
if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$
until F_{c} stops changing

Canonical Cover Example

\square Functional dependencies F on schema (A, B, C)
$\square F=\{A \rightarrow B C, B \rightarrow C, A \rightarrow B, A B \rightarrow C\}$
\square Find F_{c}
\square Apply union rule to $A \rightarrow B C$ and $A \rightarrow B$
\square Left with: $\{A \rightarrow B C, B \rightarrow C, A B \rightarrow C$ \}
$\square A$ is extraneous in $A B \rightarrow C$
$\square B \rightarrow C$ is logically implied by F (obvious)
\square Left with: $\{A \rightarrow B C, B \rightarrow C$ \}
$\square C$ is extraneous in $A \rightarrow B C$
Logically implied by $A \rightarrow B, B \rightarrow C$
$\square F_{c}=\{A \rightarrow B, B \rightarrow C\}$

Canonical Covers

\square A set of functional dependencies can have multiple canonical covers
\square Example:
$\square F=\{A \rightarrow B C, B \rightarrow A C, C \rightarrow A B\}$
\square Has several canonical covers:
$\square F_{c}=\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
$\square F_{c}=\{A \rightarrow B, B \rightarrow A C, C \rightarrow B\}$
$\square F_{c}=\{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$
$\square F_{\mathrm{c}}=\{A \rightarrow C, B \rightarrow C, C \rightarrow A B\}$
$\square F_{c}=\{A \rightarrow B C, B \rightarrow A, C \rightarrow A\}$

Another Example

\square Functional dependencies F on schema (A, B, C, D)
$\square F=\{A \rightarrow B, B C \rightarrow D, A C \rightarrow D\}$
\square Find F_{c}
\square In this case, it may look like $F_{c}=F \ldots$
\square However, can infer $A C \rightarrow D$ from $A \rightarrow B, B C \rightarrow D$ (pseudotransitivity), so $A C \rightarrow D$ is extraneous in F
\square Therefore, $F_{c}=\{A \rightarrow B, B C \rightarrow D\}$
\square Alternately, can argue that D is extraneous in $A C \rightarrow D$
\square With $F^{\prime}=\{A \rightarrow B, B C \rightarrow D\}$, we see that $\{A C\}^{+}=A B C D$, so D is extraneous in $A C \rightarrow D$
\square (If you eliminate the entire RHS of a functional dependency, it goes away)

Lossy Decompositions

\square Some schema decompositions lose information
\square Example:
employee(emp id, emp_name, phone, title, salary, start_date)
\square Decomposed into:
emp_ids(emp id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)
\square Problem:
■emp_name doesn't uniquely identify employees
\square This is a lossy decomposition

Lossless Decompositions

\square Given:
\square Relation schema R, relation $r(R)$
\square Set of functional dependencies F
\square Let R_{1} and R_{2} be a decomposition of R
$\square R_{1} \cup R_{2}=R$
\square The decomposition is lossless if, for all legal instances of r :
$\Pi_{R_{1}}(r) \bowtie \Pi_{R_{2}}(r)=r$
\square A simple definition...

Lossless Decompositions (2)

\square Can define with functional dependencies:
$\square R_{1}$ and R_{2} form a lossless decomposition of R if at least one of these dependencies is in F^{+}:

$$
\begin{aligned}
& R_{1} \cap R_{2} \rightarrow R_{1} \\
& R_{1} \cap R_{2} \rightarrow R_{2}
\end{aligned}
$$

$\square R_{1} \cap R_{2}$ forms a superkey of R_{1} and/or R_{2}
\square Test for superkeys using attribute-set closure

Decomposition Examples (1)

\square The employee example:
employee(emp id, emp_name, phone, title, salary, start_date)
\square Decomposed into:
emp_ids(emp id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)
\square emp_name is not a superkey of emp_ids or emp_details, so the decomposition is lossy

Decomposition Examples (2)

\square The bor_loan example:
bor_loan(cust id, loan id, amount)
\square Decomposed into:
borrower(cust_id, loan_id)
loan(loan id, amount) (loan_id \rightarrow loan_id, amount)
\square loan_id is a superkey of loan, so the decomposition is lossless

BCNF Decompositions

\square If R is a schema not in BCNF:
\square There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R

- For simplicity, also require that $\alpha \cap \beta=\varnothing$
- (if $\alpha \cap \beta \neq \emptyset$ then ($\alpha \cap \beta$) is extraneous in β)
\square Replace R with two schemas:

$$
\begin{aligned}
R_{1} & =(\alpha \cup \beta) \\
R_{2} & =(R-\beta) \\
& =(\text { was } R-(\beta-\alpha), \text { but } \beta-\alpha=\beta, \text { since } \alpha \cap \beta=\emptyset)
\end{aligned}
$$

\square BCNF decomposition is lossless
$\square R_{1} \cap R_{2}=\alpha$
$\square \alpha$ is a superkey of R_{1}
$\square \alpha$ also appears in R_{2}

Dependency Preservation

\square Some schema decompositions are not dependencypreserving
\square Functional dependencies that span multiple relation schemas are hard to enforce
\square e.g. BCNF may require decomposition of a schema for one dependency, and make it hard to enforce another dependency
\square Can test for dependency preservation using functional dependency theory

Dependency Preservation (2)

\square Given:
\square A set F of functional dependencies on a schema R
$\square R_{1}, R_{2}, \ldots, R_{n}$ are a decomposition of R
\square The restriction of F to R_{i} is the set F_{i} of functional dependencies in F^{+}that only has attributes in R_{i}
\square Each F_{i} contains functional dependencies that can be checked efficiently, using only R_{i}
\square Find all functional dependencies that can be checked efficiently
$\square F^{\prime}=F_{1} \cup F_{2} \cup \ldots \cup F_{n}$
If $F^{\prime+}=F^{+}$then the decomposition is dependencypreserving

Third Normal Form Schemas

\square Can generate a 3NF schema from a set of functional dependencies F
\square Called the 3NF synthesis algorithm
\square Instead of decomposing an initial schema, generates schemas from a set of dependencies
\square Given a set F of functional dependencies
\square Uses the canonical cover F_{c}
\square Ensures that resulting schemas are dependency-preserving

3NF Synthesis Algorithm

\square Inputs: set of functional dependences F, on a schema R
let F_{c} be a canonical cover for F;
$i:=0$;
for each functional dependency $\alpha \rightarrow \beta$ in F_{c} do
if none of the schemas $R_{i j} i=1,2, \ldots, i$ contains $(\alpha \cup \beta)$ then $i:=i+1$; $R_{i}:=(\alpha \cup \beta)$
end if
done
if no schema $R_{i} i=1,2, \ldots, i$ contains a candidate key for R then
$i:=i+1$;
$R_{i}:=$ any candidate key for R
end if
return $\left(R_{1}, R_{2}, \ldots, R_{i}\right)$

BCNF vs. 3NF

\square Boyce-Codd Normal Form:
\square Eliminates more redundant information than 3NF
\square Some functional dependencies become expensive to enforce

- The conditions to enforce involve multiple relations
\square Overall, a very desirable normal form!
\square Third Normal Form:
\square All [more] dependencies are [probably] easy to enforce...
\square Allows more redundant information, which must be kept synchronized by the database application!
\square Personal banker example:
works_in(emp id, branch_name) cust_banker_branch(cust id, branch name, emp_id, type)
- Branch names must be kept synchronized between these relations!

BCNF and 3NF vs. SQL

\square SQL constraints:
\square Only key constraints are fast and easy to enforce!
\square Only easy to enforce functional dependencies $\alpha \rightarrow \beta$ if α is a key on some table!
\square Other functional dependencies (even "easy" ones in 3NF) may require more expensive constraints, e.g. CHECK
\square For SQL databases with materialized views:
\square Can decompose a schema into BCNF
\square For dependencies $\alpha \rightarrow \beta$ not preserved in decomposition, create materialized view joining all relations in dependency
\square Enforce unique(α) constraint on materialized view
\square Impacts both space and performance, but it works...

Multivalued Attributes

$\square \mathrm{E}-\mathrm{R}$ schemas can have multivalued attributes
\square 1NF requires only atomic attributes
\square Not a problem; translating to relational model leaves everything atomic
\square Employee example: employee(emp id, emp_name) emp_deps(emp_id, dependent) emp_nums(emp_id, phone_num)

employee
emp id
emp_name
$\{$ phone_num $\}$
$\{$ dependent $\}$

\square What are the requirements on these schemas for what tuples must appear?

Multivalued Attributes (2)

\square Example data:

emp_id	emp_name
125623	Rick
employee	

emp_id	dependent
125623	Jeff
125623	Alice
emp_deps	

emp_id	phone_num
125623	$555-8888$
125623	$555-2222$
emp_nums	

- Every distinct value of multivalued attribute requires a separate tuple, including associated value of emp_id
\square A consequence of 1 NF, in fact!
- If attributes could be nonatomic, could just store list of values in the appropriate column!
$\square 1$ NF requires extra tuples to represent multivalues

Independent Multivalued Attributes

\square Question is trickier when a schema stores several independent multivalued attributes
\square Proposed combined schema:
employee(emp id, emp_name)
emp_info(emp_id, dependent, phone_num)
\square What tuples must appear in emp_info?

- emp_info is a relation
\square If an employee has M dependents and N phone numbers, emp_info must contain $M \times N$ tuples
- Exactly what we get if we natural-join emp_deps and emp_nums
\square Every combination of the employee's dependents and their phone numbers

Independent Multivalued Attributes

\square Example data:

emp_id	emp_name
125623	Rick

employee

emp_id	dependent	phone_num
125623	Jeff	$555-8888$
125623	Jeff	$555-2222$
125623	Alice	$555-8888$
125623	Alice	$555-2222$
emp_info		

\square Clearly has unnecessary redundancy
\square Can't formulate functional dependencies to represent multivalued attributes
\square Can't use BCNF or 3NF decompositions to eliminate redundancy in these cases

Multivalued Attributes Example

\square Two employees: Rick and Bob
\square Both share a phone number at work

- Both have two kids
- Both have a kid named Alice
\square Can't use functional dependencies to reason about this situation!
\square emp_id \rightarrow phone_num doesn't hold since an employee can have several phone numbers
\square phone_num \rightarrow emp_id doesn't hold either, since several employees can have the same phone number
\square Same with emp_id and dependent...

emp_id	emp_name
125623	Rick
127341	Bob
employee	

emp_id	phone_num
125623	$555-8888$
125623	$555-2222$
127341	$555-2222$
emp_nums	

emp_id	dependent
125623	Jeff
125623	Alice
127341	Alice
127341	Clara
emp_deps	

Dependencies

\square Functional dependencies rule out what tuples can appear in a relation
\square If $A \rightarrow B$ holds, then tuples cannot have same value for A but different values for B
\square Also called equality-generating dependencies
\square Multivalued dependencies specify what tuples must be present
\square To represent a multivalued attribute's values properly, a certain set of tuples must be present
\square Also called tuple-generating dependencies

Multivalued Dependencies

\square Given a relation schema R
\square Attribute-sets $\alpha \in R, \beta \in R$
$\square \alpha \rightarrow \beta$ is a multivalued dependency
\square " α multidetermines β "
\square A multivalued dependency $\alpha \rightarrow \beta$ holds on R if, in any legal relation $r(R)$:
For all pairs of tuples t_{1} and t_{2} in r such that $t_{1}[\alpha]=t_{2}[\alpha]$, There also exists tuples t_{3} and t_{4} in r such that:
$\square t_{1}[\alpha]=t_{2}[\alpha]=t_{3}[\alpha]=t_{4}[\alpha]$
$\square t_{1}[\beta]=t_{3}[\beta]$ and $t_{2}[\beta]=t_{4}[\beta]$
$\square t_{1}[R-\beta]=t_{4}[R-\beta]$ and $t_{2}[R-\beta]=t_{3}[R-\beta]$

Multivalued Dependencies (2)

\square Multivalued dependency $\alpha \rightarrow \beta$ holds on R if, in any legal relation $r(R)$:
For all pairs of tuples t_{1} and t_{2} in r such that $t_{1}[\alpha]=t_{2}[\alpha]$,
There also exists tuples t_{3} and t_{4} in r such that:
$\square t_{1}[\alpha]=t_{2}[\alpha]=t_{3}[\alpha]=t_{4}[\alpha]$
$\square t_{1}[\beta]=t_{3}[\beta]$ and $t_{2}[\beta]=t_{4}[\beta]$
$\square t_{1}[R-\beta]=t_{4}[R-\beta]$ and $t_{2}[R-\beta]=t_{3}[R-\beta]$
\square Pictorially:

	α	β	$R-(\alpha \cup \beta)$
t_{1}	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$a_{j+1} \ldots a_{n}$
t_{2}	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$b_{j+1} \ldots b_{n}$
t_{3}	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$b_{j+1} \ldots b_{n}$
t_{4}	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$a_{j+1} \ldots a_{n}$

Multivalued Dependencies (3)

\square Multivalued dependency:

	α	β	$R-(\alpha \cup \beta)$
t_{1}	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$a_{j+1} \ldots a_{n}$
t_{2}	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$b_{j+1} \ldots b_{n}$
t_{3}	$a_{1} \ldots a_{i}$	$a_{i+1} \ldots a_{j}$	$b_{j+1} \ldots b_{n}$
t_{4}	$a_{1} \ldots a_{i}$	$b_{i+1} \ldots b_{j}$	$a_{j+1} \ldots a_{n}$

\square If $\alpha \rightarrow \beta$ then $R-(\alpha \cup \beta)$ is independent of this fact

- Every distinct value of β must be associated once with every distinct value of $R-(\alpha \cup \beta)$
\square Let $\gamma=R-(\alpha \cup \beta)$
- If $\alpha \rightarrow \beta$ then also $\alpha \rightarrow \gamma$
$\square \alpha \rightarrow \beta$ implies $\alpha \rightarrow \gamma$
\square Sometimes written $\alpha \rightarrow \beta \mid \gamma$

Trivial Multivalued Dependencies

$\square \alpha \rightarrow \beta$ is a trivial multivalued dependency on R if all relations $r(R)$ satisfy the dependency
\square Specifically, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$, or if
$\alpha \cup \beta=R$
\square Employee examples:
\square For schema emp_deps(emp_id, dependent), emp_id \rightarrow dependent is trivial
\square For emp_info(emp_id, dependent, phone_num), emp_id \rightarrow dependent is not trivial

Inference Rules

\square Can reason about multivalued dependencies, just like functional dependencies
\square There is a set of complete, sound inference rules for MVDs
\square Example inference rules:
\square Complementation rule:

- If $\alpha \rightarrow \beta$ holds on R, then $\alpha \rightarrow R-(\alpha \cup \beta)$ holds
\square Multivalued augmentation rule:
■ If $\alpha \rightarrow \beta$ holds, and $\gamma \subseteq R$, and $\delta \subseteq \gamma$, then $\gamma \alpha \rightarrow \delta \beta$ holds
\square Multivalued transitivity rule:
- If $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma-\beta$ holds
\square Coalescence rule:
- If $\alpha \rightarrow \beta$ holds, and $\gamma \subseteq \beta$, and there is a δ such that $\delta \subseteq R$, and $\delta \cap \beta=\emptyset$, and $\delta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ holds

Functional Dependencies

\square Functional dependencies are also multivalued dependencies
\square Replication rule:
\square If $\alpha \rightarrow \beta$, then $\alpha \rightarrow \beta$ too
\square Note there is an additional constraint from $\alpha \rightarrow \beta$: each value of α has at most one associated value for β
\square Usually, functional dependencies are not stated as multivalued dependencies

- The extra caveat is important, but not obvious in notation
\square Also, functional dependencies are easier to reason about!

Closures and Restrictions

\square For a set D of functional and multivalued dependencies, can compute closure D^{+}
\square Use inference rules for both functional and multivalued dependencies to compute closure
\square Sometimes need the restriction of D^{+}to a relation schema R, too
\square The restriction of D to a schema R_{i} includes:
\square All functional dependencies in D^{+}that include only attributes in R_{i}
\square All multivalued dependencies of the form $\alpha \rightarrow \beta \cap R_{i}$, where $\alpha \subseteq R_{i}$, and $\alpha \rightarrow \beta$ is in D^{+}

Fourth Normal Form

\square Given:

- Relation schema R
\square Set of functional and multivalued dependencies D
$\square R$ is in 4NF with respect to D if:
\square For all multivalued dependencies $\alpha \rightarrow \beta$ in D^{+}, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
$-\alpha \rightarrow \beta$ is a trivial multivalued dependency
- α is a superkey for R
\square Note: If $\alpha \rightarrow \beta$ then $\alpha \rightarrow \beta$
\square A database design is in 4 NF if all schemas in the design are in 4NF

4NF and BCNF

\square Main difference between $4 N F$ and BCNF is use of multivalued dependencies instead of functional dependencies
\square Every schema in 4NF is also in BCNF

- If a schema is not in BCNF then there is a nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R
\square If $\alpha \rightarrow \beta$ then $\alpha \rightarrow \beta$

4NF Decompositions

\square Decomposition rule is very similar to BCNF
\square If schema R is not in $4 N F$ with respect to a set of multivalued dependencies D :
\square There is some nontrivial dependency $\alpha \rightarrow \beta$ in D^{+} where $\alpha \subseteq R$ and $\beta \subseteq R$, and α is not a superkey of R

- Also constrain that $\alpha \cap \beta=\varnothing$
\square Replace R with two new schemas:
$\square R_{1}=(\alpha \cup \beta)$
$-R_{2}=(R-\beta)$

Employee Information Example

\square Combined schema:
employee(emp id, emp_name)
emp_info(emp_id, dependent, phone_num)
\square Also have these dependencies:
■ emp_id \rightarrow emp_name

- emp_id \rightarrow dependent
- emp_id \rightarrow phone_num
\square emp_info is not in 4NF
\square Following the rules for 4NF decomposition produces:
(emp_id, dependent)
(emp_id, phone_num)
\square Note: Each relation's candidate key is the entire relation. The multivalued dependencies are trivial.

Lossless Decompositions

\square Can also define lossless decomposition with multivalued dependencies
$\square R_{1}$ and R_{2} form a lossless decomposition of R if at least one of these dependencies is in D^{+}:

$$
\begin{aligned}
& R_{1} \cap R_{2} \rightarrow R_{1} \\
& R_{1} \cap R_{2} \rightarrow R_{2}
\end{aligned}
$$

Beyond Fourth Normal Form?

\square Additional normal forms with various constraints
\square Example: join dependencies
\square Given R, and a decomposition R_{1} and R_{2} where $R_{1} \cup R_{2}=R:$
\square The decomposition is lossless if, for all legal instances of $r(R)$, $\Pi_{R_{1}}(r) \bowtie \Pi_{R_{2}}(r)=r$
\square Can state this as a join dependency: $*\left(R_{1}, R_{2}\right)$
\square This is actually identical to a multivalued dependency!
$\square *\left(R_{1}, R_{2}\right)$ is equivalent to $R_{1} \cap R_{2} \rightarrow R_{1} \mid R_{2}$

Join Dependencies and 5NF

\square Join dependencies (JD) are a generalization of multivalued dependencies (MVD)
\square Can specify JDs involving N relation schemas, $N \geq 2$
\square JDs are equivalent to MVDs when $N=2$
\square Can easily construct JDs where $N>2$, with no equivalent set of MVDs
\square Project-Join Normal Form (a.k.a. PJNF or 5NF):
\square A relation schema R is in PJNF with respect to a set of join dependencies D if, for all JDs in D^{+}of the form $*\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ where $R_{1} \cup R_{2} \cup \ldots \cup R_{n}=R$, at least one of the following holds:

- $*\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is a trivial join dependency
- Every R_{i} is a superkey for R

Join Dependencies and 5NF (2)

\square If a schema is in Project-Join Normal Form then it is also in $4 N F$ (and thus, in BCNF)
\square Every multivalued dependency is also a join dependency
\square (Every functional dependency is also a multivalued dependency)
\square One small problem:
\square There isn't a complete, sound set of inference rules for join dependencies!
\square Can't reason about our set of join dependencies D...
\square This limits PJNF's real-world usefulness

Domain-Key Normal Form

\square Domain-key normal form (DKNF) is an even more general normal form, based on:
\square Domain constraints: what values may be assigned to attribute A

- Usually inexpensive to test, even with CHECK constraints
\square Key constraints: all attribute-sets K that are a superkey for a schema R (i.e. $K \rightarrow R$)
- Almost always inexpensive to test
\square General constraints: other predicates on valid relations in a schema
- Could be very expensive to test!
\square A schema R is in DKNF if the domain constraints and key constraints logically imply the general constraints
- An "ideal" normal form difficult to achieve in practice...

