FUNCTIONAL DEPENDENCY THEORY II

CS121: Relational Databases Fall 2018 – Lecture 20

Canonical Cover

- 2
- □ A canonical cover F_c for F is a set of functional dependencies such that:
 - **\Box** F logically implies all dependencies in F_c
 - \square F_{c} logically implies all dependencies in F
 - Can't infer any functional dependency in F_c from other dependencies in F_c
 - No functional dependency in F_c contains an extraneous attribute
 - **\square** Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \to \beta_1$ and $\alpha_2 \to \beta_2$ in F_c such that $\alpha_1 = \alpha_2$

Extraneous Attributes

- □ Given a set F of functional dependencies
 - An attribute in a functional dependency is <u>extraneous</u> if it can be removed from F without changing F⁺
- \Box Formally: given *F*, and $\alpha \rightarrow \beta$
 - □ If $A \in \alpha$, and F logically implies ($F - \{\alpha \rightarrow \beta\}$) $\cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 - □ If $A \in \beta$, and $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies *F*, then *A* is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta A)$
 - See if F' logically implies F

Testing Extraneous Attributes

- 4
- Given relation schema R, and a set F of functional dependencies that hold on R
- \Box Attribute A in $\alpha \rightarrow \beta$
- □ If $A \in \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha - \{A\}$
 - See if $\gamma \rightarrow \beta$ can be inferred from *F*
 - **Compute** γ^+ under *F*
 - If $\beta \subseteq \gamma^+$ then A is extraneous in α
- □ e.g. if $AB \rightarrow C$ and you want to see if B is extraneous, can see if you can infer $A \rightarrow C$ from F

Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- \Box Attribute A in $\alpha \rightarrow \beta$
- □ If $A \in \beta$ (on right side of the dependency), then try the <u>altered</u> set F'
 - $\square F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$
 - See if $\alpha \rightarrow A$ can be inferred from F'
 - Compute α^+ under F'
 - \blacksquare If α^+ includes A then A is extraneous in β
- □ e.g. if $A \rightarrow BC$ and you want to see if B is extraneous, you can already infer $A \rightarrow B$ from this dependency
 - Must generate F' with only $A \rightarrow C$, and if you can infer $A \rightarrow B$ from F', then B was indeed extraneous

Computing Canonical Cover

6

A simple way to compute the canonical cover of F

 $F_{\rm c} = F$

repeat

apply union rule to replace dependencies in F_c of form $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$ find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute /* Use F_c for the extraneous attribute test, not $F \parallel \parallel */$ if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until F_c stops changing

Canonical Cover Example

- □ Functional dependencies F on schema (A, B, C) □ $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
 - **I** Find F_c
- □ Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$ □ Left with: { $A \rightarrow BC$, $B \rightarrow C$, $AB \rightarrow C$ }
- \Box A is extraneous in AB \rightarrow C
 - $\square B \rightarrow C \text{ is logically implied by } F \text{ (obvious)}$
 - $\square Left with: \{ A \rightarrow BC, B \rightarrow C \}$
- \Box C is extraneous in A \rightarrow BC
 - Logically implied by $A \rightarrow B, B \rightarrow C$
- $\Box F_{c} = \{ A \rightarrow B, B \rightarrow C \}$

Canonical Covers

- A set of functional dependencies can have multiple canonical covers
- Example:

$$\square F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \}$$

Has several canonical covers:

$$F_{c} = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \}$$

$$F_{c} = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \}$$

$$F_{c} = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \}$$

$$F_{c} = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \}$$

$$F_{c} = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \}$$

Another Example

- □ Functional dependencies F on schema (A, B, C, D)
 - $\square F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$
 - **I** Find F_c
- □ In this case, it may look like $F_c = F...$
- □ However, can infer AC → D from A → B, BC → D (pseudotransitivity), so AC → D is extraneous in F
 □ Therefore, F_c = { A → B, BC → D }
- \Box Alternately, can argue that D is extraneous in AC \rightarrow D
 - With $F' = \{A \rightarrow B, BC \rightarrow D\}$, we see that $\{AC\}^+ = ABCD$, so D is extraneous in $AC \rightarrow D$
 - (If you eliminate the entire RHS of a functional dependency, it goes away)

Lossy Decompositions

- Some schema decompositions lose information
- Example:
 - employee(<u>emp_id</u>, emp_name, phone, title, salary, start_date)
 - Decomposed into:
 - emp_ids(emp_id, emp_name)
 - emp_details(emp_name, phone, title, salary, start_date)
- Problem:
 - emp_name doesn't uniquely identify employees
 - This is a lossy decomposition

Lossless Decompositions

Given:

- Relation schema R, relation r(R)
- Set of functional dependencies F
- □ Let R_1 and R_2 be a decomposition of R□ $R_1 \cup R_2 = R$
- The decomposition is lossless if, for <u>all</u> legal instances of r :

 $\prod_{R_1}(r) \bowtie \prod_{R_2}(r) = r$

□ A simple definition...

Lossless Decompositions (2)

- Can define with functional dependencies:
 - \square R_1 and R_2 form a lossless decomposition of R if at least one of these dependencies is in F^+ :

$$R_1 \cap R_2 \rightarrow R_1$$

$$R_1 \cap R_2 \to R_2$$

- $\square R_1 \cap R_2 \text{ forms a superkey of } R_1 \text{ and/or } R_2$
 - Test for superkeys using attribute-set closure

Decomposition Examples (1)

- □ The employee example:
 - employee(emp_id, emp_name, phone, title, salary,
 start_date)
- Decomposed into:
 - emp_ids(emp_id, emp_name)
 - emp_details(emp_name, phone, title, salary, start_date)
- emp_name is not a superkey of emp_ids or emp_details, so the decomposition is lossy

Decomposition Examples (2)

□ The bor_loan example:

bor_loan(cust id, loan id, amount)

Decomposed into:

borrower(cust_id, loan_id)

loan(loan id, amount) ($loan_id \rightarrow loan_id, amount$)

loan_id is a superkey of loan, so the decomposition is lossless

BCNF Decompositions

15

\square If R is a schema not in BCNF:

- □ There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for *R*
- **\square** For simplicity, also require that $\alpha \cap \beta = \emptyset$
 - (if $\alpha \cap \beta \neq \emptyset$ then $(\alpha \cap \beta)$ is extraneous in β)
- Replace R with two schemas:

$$R_1 = (\alpha \cup \beta)$$

$$R_2 = (R - \beta)$$

(was $R - (\beta - \alpha)$, but $\beta - \alpha = \beta$, since $\alpha \cap \beta = \emptyset$)

BCNF decomposition is lossless

$$\square R_1 \cap R_2 = \alpha$$

- $\square \alpha$ is a superkey of R_1
- $\square \alpha$ also appears in R_2

Dependency Preservation

- Some schema decompositions are not dependencypreserving
 - Functional dependencies that span multiple relation schemas are hard to enforce
 - e.g. BCNF may require decomposition of a schema for one dependency, and make it hard to enforce another dependency
- Can test for dependency preservation using functional dependency theory

Dependency Preservation (2)

□ Given:

- A set F of functional dependencies on a schema R
- \square R_1, R_2, \dots, R_n are a decomposition of R
- \square The <u>restriction</u> of F to R_i is the set F_i of functional dependencies in F^+ that only has attributes in R_i
 - Each F_i contains functional dependencies that can be checked efficiently, using only R_i
- Find all functional dependencies that can be checked efficiently
 - $\square F' = F_1 \cup F_2 \cup \ldots \cup F_n$
 - **If** $F'^+ = F^+$ then the decomposition is dependencypreserving

Third Normal Form Schemas

- Can generate a 3NF schema from a set of functional dependencies F
- Called the <u>3NF synthesis algorithm</u>
 - Instead of decomposing an initial schema, generates schemas from a set of dependencies
- \Box Given a set F of functional dependencies
 - **\square** Uses the canonical cover F_{c}
 - Ensures that resulting schemas are dependency-preserving

3NF Synthesis Algorithm

19

 \Box Inputs: set of functional dependences *F*, on a schema *R*

```
let F_c be a canonical cover for F;

i := 0;

for each functional dependency \alpha \rightarrow \beta in F_c do

if none of the schemas R_j, j = 1, 2, ..., i contains (\alpha \cup \beta) then

i := i + 1;

R_i := (\alpha \cup \beta)

end if
```

done

if no schema R_j, j = 1, 2, ..., i contains a candidate key for R then
 i := i + 1;
 R_i := any candidate key for R
end if
return (R₁, R₂, ..., R_i)

BCNF vs. 3NF

Boyce-Codd Normal Form:

- Eliminates more redundant information than 3NF
- Some functional dependencies become expensive to enforce
 - The conditions to enforce involve multiple relations
- Overall, a very desirable normal form!

Third Normal Form:

- All [more] dependencies are [probably] easy to enforce...
- Allows more redundant information, which must be kept synchronized by the database application!

Personal banker example:

works_in(emp_id, branch_name)

cust_banker_branch(cust_id, branch_name, emp_id, type)

Branch names must be kept synchronized between these relations!

BCNF and 3NF vs. SQL

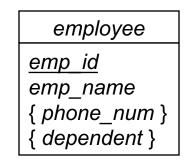
SQL constraints:

- Only key constraints are fast and easy to enforce!
- Only easy to enforce functional dependencies $\alpha \rightarrow \beta$ if α is a key on some table!
- Other functional dependencies (even "easy" ones in 3NF) may require more expensive constraints, e.g. CHECK
- □ For SQL databases with materialized views:
 - Can decompose a schema into BCNF
 - For dependencies $\alpha \rightarrow \beta$ not preserved in decomposition, create materialized view joining all relations in dependency
 - **\square** Enforce **unique**(α) constraint on materialized view
- Impacts both space and performance, but it works...

Multivalued Attributes

- E-R schemas can have multivalued attributes
- INF requires only atomic attributes
 - Not a problem; translating to relational model leaves everything atomic
- Employee example:

employee(emp_id, emp_name)
emp_deps(emp_id, dependent)
emp_nums(emp_id, phone_num)



What are the requirements on these schemas for what tuples <u>must</u> appear?

Multivalued Attributes (2)

Example data:

emp id	emp name		emp_id	dependent	emp_id	phone_num
125623	Rick		125623	Jeff	125623	555-8888
120020	employee		125623	Alice	125623	555-2222
omployee		_		emp_deps		emp_nums

- Every distinct value of multivalued attribute requires a separate tuple, including associated value of emp_id
- \Box A consequence of 1NF, in fact!
 - If attributes could be nonatomic, could just store list of values in the appropriate column!
 - INF <u>requires</u> extra tuples to represent multivalues

Independent Multivalued Attributes

- Question is trickier when a schema stores several independent multivalued attributes
- Proposed combined schema: employee(<u>emp_id</u>, emp_name) emp_info(emp_id, dependent, phone_num)
- □ What tuples must appear in emp_info ?
 - emp_info is a relation
 - If an employee has M dependents and N phone numbers, emp_info must contain M × N tuples
 - Exactly what we get if we natural-join emp_deps and emp_nums
 - Every combination of the employee's dependents and their phone numbers

Independent Multivalued Attributes

Example data:

emp_id	emp_name
125623	Rick
	employee

emp_id	dependent	phone_num
125623	Jeff	555-8888
125623	Jeff	555-2222
125623	Alice	555-8888
125623	Alice	555-2222
		omn info

emp_info

- Clearly has unnecessary redundancy
- Can't formulate functional dependencies to represent multivalued attributes
- Can't use BCNF or 3NF decompositions to eliminate redundancy in these cases

Multivalued Attributes Example

- Two employees: Rick and Bob
 - Both share a phone number at work
 - Both have two kids
 - Both have a kid named Alice
- Can't use functional dependencies to reason about this situation!
 - emp_id → phone_num doesn't hold since an employee can have several phone numbers
 - □ phone_num → emp_id doesn't hold either, since several employees can have the same phone number
 - Same with emp_id and dependent...

emp_id	emp_name
125623	Rick
127341	Bob

employee

emp_id	phone_num
125623	555-8888
125623	555-2222
127341	555-2222

emp_nums

emp_id	dependent
125623	Jeff
125623	Alice
127341	Alice
127341	Clara

emp_deps

Dependencies

- Functional dependencies rule out what tuples can appear in a relation
 - □ If $A \rightarrow B$ holds, then tuples cannot have same value for A but different values for B
 - Also called <u>equality-generating dependencies</u>
- <u>Multivalued dependencies</u> specify what tuples must be present
 - To represent a multivalued attribute's values properly, a certain set of tuples *must* be present
 - Also called <u>tuple-generating dependencies</u>

Multivalued Dependencies

Given a relation schema R

- \square Attribute-sets $\alpha \in \mathit{R}$, $\beta \in \mathit{R}$
- $\square \alpha \longrightarrow \beta$ is a multivalued dependency
- " α multidetermines β "
- □ A multivalued dependency $\alpha \longrightarrow \beta$ holds on *R* if, in any legal relation *r*(*R*):

For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, There also exists tuples t_3 and t_4 in r such that:

■
$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$

■ $t_1[\beta] = t_3[\beta]$ and $t_2[\beta] = t_4[\beta]$
■ $t_1[R - \beta] = t_4[R - \beta]$ and $t_2[R - \beta] = t_3[R - \beta]$

Multivalued Dependencies (2)

□ Multivalued dependency $\alpha \rightarrow \beta$ holds on *R* if, in any legal relation *r*(*R*):

For all pairs of tuples t_1 and t_2 in r such that $t_1[\alpha] = t_2[\alpha]$, There also exists tuples t_3 and t_4 in r such that:

□
$$t_1[\alpha] = t_2[\alpha] = t_3[\alpha] = t_4[\alpha]$$

□ $t_1[\beta] = t_3[\beta]$ and $t_2[\beta] = t_4[\beta]$
□ $t_1[R - \beta] = t_4[R - \beta]$ and $t_2[R - \beta] = t_3[R - \beta]$

□ Pictorially:

	α	β	$R - (\alpha \cup \beta)$
<i>t</i> ₁		a _{i+1} a _j	a _{j+1} a _n
<i>t</i> ₂	a ₁ a _i	$b_{i+1}b_j$	$b_{j+1}b_n$
<i>t</i> ₃	a ₁ a _i	<i>a_{i+1}…a_j</i>	$b_{j+1}b_n$
<i>t</i> ₄	a ₁ a _i	$b_{i+1}b_j$	a _{j+1} a _n

Multivalued Dependencies (3)

Multivalued dependency:

	α	β	$R - (\alpha \cup \beta)$
<i>t</i> ₁	a ₁ a _i	a _{i+1} a _j	a _{j+1} a _n
<i>t</i> ₂	a ₁ a _i	$b_{i+1}b_j$	$b_{j+1}b_n$
<i>t</i> ₃	a ₁ a _i	<i>a_{i+1}…a_j</i>	$b_{j+1}b_n$
<i>t</i> ₄	a ₁ a _i	$b_{i+1}b_j$	a _{j+1} a _n

- □ If $\alpha \longrightarrow \beta$ then *R* ($\alpha \cup \beta$) is independent of this fact
 - Every distinct value of β must be associated once with every distinct value of $R (\alpha \cup \beta)$
- $\Box \text{ Let } \gamma = R (\alpha \cup \beta)$
 - $\square \text{ If } \alpha \longrightarrow \beta \text{ then also } \alpha \longrightarrow \gamma$
 - $\square \alpha \longrightarrow \beta \text{ implies } \alpha \longrightarrow \gamma$
 - Sometimes written $\alpha \longrightarrow \beta \mid \gamma$

Trivial Multivalued Dependencies

- $\square \alpha \longrightarrow \beta$ is a trivial multivalued dependency on R if <u>all</u> relations r(R) satisfy the dependency
- □ Specifically, $\alpha \longrightarrow \beta$ is trivial if $\beta \subseteq \alpha$, or if $\alpha \cup \beta = R$
- Employee examples:

Inference Rules

- Can reason about multivalued dependencies, just like functional dependencies
 - There is a set of complete, sound inference rules for MVDs
- Example inference rules:
 - Complementation rule:
 - If $\alpha \longrightarrow \beta$ holds on R, then $\alpha \longrightarrow R (\alpha \cup \beta)$ holds
 - Multivalued augmentation rule:
 - If $\alpha \longrightarrow \beta$ holds, and $\gamma \subseteq R$, and $\delta \subseteq \gamma$, then $\gamma \alpha \longrightarrow \delta \beta$ holds
 - Multivalued transitivity rule:
 - If $\alpha \longrightarrow \beta$ and $\beta \longrightarrow \gamma$ holds, then $\alpha \longrightarrow \gamma \beta$ holds
 - Coalescence rule:
 - If $\alpha \longrightarrow \beta$ holds, and $\gamma \subseteq \beta$, and there is a δ such that $\delta \subseteq R$, and $\delta \cap \beta = \emptyset$, and $\delta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ holds

Functional Dependencies

- Functional dependencies are also multivalued dependencies
- Replication rule:
 - $\blacksquare \text{ If } \alpha \to \beta \text{, then } \alpha \twoheadrightarrow \beta \text{ too}$
 - Note there is an <u>additional</u> constraint from $\alpha \rightarrow \beta$: each value of α has at most one associated value for β
- Usually, functional dependencies are <u>not</u> stated as multivalued dependencies
 - The extra caveat is important, but not obvious in notation
 - Also, functional dependencies are easier to reason about!

Closures and Restrictions

- For a set D of functional and multivalued dependencies, can compute closure D⁺
 - Use inference rules for both functional and multivalued dependencies to compute closure
- Sometimes need the restriction of D⁺ to a relation schema R, too
- \Box The restriction of D to a schema R_i includes:
 - All functional dependencies in D^+ that include only attributes in R_i
 - All multivalued dependencies of the form $\alpha \longrightarrow \beta \cap R_i$, where $\alpha \subseteq R_i$, and $\alpha \longrightarrow \beta$ is in D^+

Fourth Normal Form

□ Given:

- Relation schema R
- Set of functional and multivalued dependencies D
- \square *R* is in 4NF with respect to *D* if:
 - For all multivalued dependencies $\alpha \longrightarrow \beta$ in D^+ , where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is a trivial multivalued dependency
 - α is a superkey for *R*
 - $\square \text{ Note: If } \alpha \to \beta \text{ then } \alpha \twoheadrightarrow \beta$
- A database design is in 4NF if all schemas in the design are in 4NF

4NF and BCNF

- Main difference between 4NF and BCNF is use of multivalued dependencies instead of functional dependencies
- □ Every schema in 4NF is also in BCNF
 - □ If a schema is not in BCNF then there is a nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for *R*
 - $\square \text{ If } \alpha \to \beta \text{ then } \alpha \twoheadrightarrow \beta$

4NF Decompositions

- 37
- Decomposition rule is very similar to BCNF
- □ If schema *R* is not in 4NF with respect to a set of multivalued dependencies *D* :
 - There is some nontrivial dependency α →→ β in D⁺ where α ⊆ R and β ⊆ R, and α is not a superkey of R
 Also constrain that α ∩ β = Ø
 - Replace R with two new schemas:

$$R_1 = (\alpha \cup \beta)$$
$$R_2 = (R - \beta)$$

Employee Information Example

Combined schema:

employee(<u>emp_id</u>, emp_name)

emp_info(emp_id, dependent, phone_num)

- Also have these dependencies:
 - emp_id → emp_name
- emp_info is not in 4NF
- Following the rules for 4NF decomposition produces:

(emp_id, dependent)

(emp_id, phone_num)

Note: Each relation's candidate key is the entire relation. The multivalued dependencies are trivial.

Lossless Decompositions

- Can also define lossless decomposition with multivalued dependencies
 - $\square R_1$ and R_2 form a lossless decomposition of R if at least one of these dependencies is in D^+ :

$$R_1 \cap R_2 \longrightarrow R_1$$
$$R_1 \cap R_2 \longrightarrow R_2$$

Beyond Fourth Normal Form?

- Additional normal forms with various constraints
- Example: join dependencies
- Given R, and a decomposition R_1 and R_2 where $R_1 \cup R_2 = R$:
 - The decomposition is lossless if, for all legal instances of r(R), $\Pi_{R_1}(r) \bowtie \Pi_{R_2}(r) = r$
- \Box Can state this as a join dependency: *(R_1 , R_2)
 - This is actually identical to a multivalued dependency!
 - (R_1, R_2) is equivalent to $R_1 \cap R_2 \longrightarrow R_1 \mid R_2$

Join Dependencies and 5NF

- 41
- Join dependencies (JD) are a generalization of multivalued dependencies (MVD)
 - Can specify JDs involving N relation schemas, N ≥ 2
 - **I** JDs are equivalent to MVDs when N = 2
 - Can easily construct JDs where N > 2, with no equivalent set of MVDs
- Project-Join Normal Form (a.k.a. PJNF or 5NF):
 - A relation schema *R* is in PJNF with respect to a set of join dependencies *D* if, for all JDs in *D*⁺ of the form $*(R_1, R_2, ..., R_n)$ where $R_1 \cup R_2 \cup ... \cup R_n = R$, at least one of the following holds:
 - $*(R_1, R_2, ..., R_n)$ is a trivial join dependency
 - Every R_i is a superkey for R

Join Dependencies and 5NF (2)

- If a schema is in Project-Join Normal Form then it is also in 4NF (and thus, in BCNF)
 - Every multivalued dependency is also a join dependency
 - (Every functional dependency is also a multivalued dependency)
- One small problem:
 - There isn't a complete, sound set of inference rules for join dependencies!
 - Can't reason about our set of join dependencies D...
 - This limits PJNF's real-world usefulness

Domain-Key Normal Form

- Domain-key normal form (DKNF) is an even more general normal form, based on:
 - Domain constraints: what values may be assigned to attribute A
 - Usually inexpensive to test, even with CHECK constraints
 - **Key constraints:** all attribute-sets K that are a superkey for a schema R (i.e. $K \rightarrow R$)
 - Almost always inexpensive to test
 - General constraints: other predicates on valid relations in a schema
 - Could be <u>very</u> expensive to test!
- A schema R is in DKNF if the domain constraints and key constraints logically imply the general constraints
 An "ideal" normal form difficult to achieve in practice...