
FUNCTIONAL DEPENDENCY
THEORY II
CS121: Relational Databases
Fall 2018 – Lecture 20

Canonical Cover

¨ A canonical cover Fc for F is a set of functional
dependencies such that:
¤ F logically implies all dependencies in Fc
¤ Fc logically implies all dependencies in F
¤ Can’t infer any functional dependency in Fc from other

dependencies in Fc
¤ No functional dependency in Fc contains an extraneous

attribute
¤ Left side of all functional dependencies in Fc are unique

n There are no two dependencies a1 ® b1 and a2 ® b2 in Fc
such that a1 = a2

2

Extraneous Attributes

¨ Given a set F of functional dependencies
¤ An attribute in a functional dependency is extraneous if

it can be removed from F without changing F+

¨ Formally: given F, and a ® b
¤ If A Î a, and F logically implies

(F – {a ® b}) ∪ {(a – A) ® b}, then A is extraneous
¤ If A Î b, and (F – {a ® b}) ∪ {a ® (b – A)} logically

implies F, then A is extraneous
n i.e. generate a new set of functional dependencies F' by

replacing a ® b with a ® (b – A)
n See if F' logically implies F

3

Testing Extraneous Attributes

¨ Given relation schema R, and a set F of functional
dependencies that hold on R

¨ Attribute A in a ® b
¨ If A Î a (i.e. A is on left side of the dependency),

then let g = a – {A}
¤ See if g ® b can be inferred from F
¤ Compute g+ under F
¤ If b ⊆ g+ then A is extraneous in a

¨ e.g. if AB® C and you want to see if B is
extraneous, can see if you can infer A® C from F

4

Testing Extraneous Attributes (2)

¨ Given relation schema R, and a set F of functional
dependencies that hold on R

¨ Attribute A in a ® b
¨ If A Î b (on right side of the dependency), then try the

altered set F'
¤ F' = (F – {a ® b}) ∪ {a ® (b – A)}
¤ See if a ® A can be inferred from F'
¤ Compute a+ under F'
¤ If a+ includes A then A is extraneous in b

¨ e.g. if A® BC and you want to see if B is extraneous, you
can already infer A® B from this dependency
¤ Must generate F' with only A® C, and if you can infer
A® B from F', then B was indeed extraneous

5

Computing Canonical Cover

¨ A simple way to compute the canonical cover of F

Fc = F
repeat

apply union rule to replace dependencies in Fc of form
a1 ® b1 and a1 ® b2 with a1 ® b1b2

find a functional dependency a ® b in Fc with an
extraneous attribute

/* Use Fc for the extraneous attribute test, not F !!! */
if an extraneous attribute is found, delete it from a ® b

until Fc stops changing

6

Canonical Cover Example

¨ Functional dependencies F on schema (A, B, C)
¤ F = { A® BC, B® C, A® B, AB® C }
¤ Find Fc

¨ Apply union rule to A® BC and A® B
¤ Left with: { A® BC, B® C, AB® C }

¨ A is extraneous in AB® C
¤ B® C is logically implied by F (obvious)
¤ Left with: { A® BC, B® C }

¨ C is extraneous in A® BC
¤ Logically implied by A® B, B® C

¨ Fc = { A® B, B® C }

7

Canonical Covers

¨ A set of functional dependencies can have multiple
canonical covers

¨ Example:
¤ F = { A® BC, B® AC, C® AB }
¤ Has several canonical covers:

n Fc = { A® B, B® C, C® A }
n Fc = { A® B, B® AC, C® B }
n Fc = { A® C, C® B, B® A }
n Fc = { A® C, B® C, C® AB }
n Fc = { A® BC, B® A, C® A }

8

Another Example

¨ Functional dependencies F on schema (A, B, C, D)
¤ F = { A® B, BC® D, AC® D }
¤ Find Fc

¨ In this case, it may look like Fc = F…
¨ However, can infer AC® D from A® B, BC® D

(pseudotransitivity), so AC® D is extraneous in F
¤ Therefore, Fc = { A® B, BC® D }

¨ Alternately, can argue that D is extraneous in AC® D
¤ With F' = { A® B, BC® D }, we see that {AC}+ = ABCD,

so D is extraneous in AC® D
¤ (If you eliminate the entire RHS of a functional dependency,

it goes away)

9

Lossy Decompositions

¨ Some schema decompositions lose information
¨ Example:

employee(emp_id, emp_name, phone, title, salary, start_date)

¤Decomposed into:
emp_ids(emp_id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)

¨ Problem:
¤ emp_name doesn’t uniquely identify employees
¤ This is a lossy decomposition

10

Lossless Decompositions

¨ Given:
¤ Relation schema R, relation r(R)
¤ Set of functional dependencies F

¨ Let R1 and R2 be a decomposition of R
¤ R1∪ R2 = R

¨ The decomposition is lossless if, for all legal
instances of r :
P (r) P (r) = r

¨ A simple definition…
R1 R2

11

Lossless Decompositions (2)

¨ Can define with functional dependencies:
¤ R1 and R2 form a lossless decomposition of R if at least

one of these dependencies is in F+ :
R1∩ R2 ® R1

R1∩ R2 ® R2

¨ R1∩ R2 forms a superkey of R1 and/or R2

¤ Test for superkeys using attribute-set closure

12

Decomposition Examples (1)

¨ The employee example:
employee(emp_id, emp_name, phone, title, salary,
start_date)

¨ Decomposed into:
emp_ids(emp_id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)

¨ emp_name is not a superkey of emp_ids or
emp_details, so the decomposition is lossy

13

Decomposition Examples (2)

¨ The bor_loan example:
bor_loan(cust_id, loan_id, amount)

¨ Decomposed into:
borrower(cust_id, loan_id)
loan(loan_id, amount) (loan_id® loan_id, amount)

¨ loan_id is a superkey of loan, so the decomposition
is lossless

14

BCNF Decompositions

¨ If R is a schema not in BCNF:
¤ There is at least one nontrivial functional dependency
a ® b such that a is not a superkey for R

¤ For simplicity, also require that a ∩ b = ∅
n (if a ∩ b ≠ ∅ then (a ∩ b) is extraneous in b)

¨ Replace R with two schemas:
R1 = (a ∪ b)
R2 = (R – b)

n (was R – (b – a), but b – a = b, since a ∩ b = ∅)
¨ BCNF decomposition is lossless

¤ R1 ∩ R2 = a
¤ a is a superkey of R1
¤ a also appears in R2

15

Dependency Preservation

¨ Some schema decompositions are not dependency-
preserving
¤ Functional dependencies that span multiple relation

schemas are hard to enforce
¤ e.g. BCNF may require decomposition of a schema for

one dependency, and make it hard to enforce another
dependency

¨ Can test for dependency preservation using
functional dependency theory

16

Dependency Preservation (2)

¨ Given:
¤ A set F of functional dependencies on a schema R
¤ R1, R2, …, Rn are a decomposition of R

¨ The restriction of F to Ri is the set Fi of functional
dependencies in F+ that only has attributes in Ri
¤ Each Fi contains functional dependencies that can be

checked efficiently, using only Ri
¨ Find all functional dependencies that can be checked

efficiently
¤ F' = F1 ∪ F2 ∪ … ∪ Fn
¤ If F' + = F+ then the decomposition is dependency-

preserving

17

Third Normal Form Schemas

¨ Can generate a 3NF schema from a set of functional
dependencies F

¨ Called the 3NF synthesis algorithm
¤ Instead of decomposing an initial schema, generates

schemas from a set of dependencies

¨ Given a set F of functional dependencies
¤ Uses the canonical cover Fc
¤ Ensures that resulting schemas are dependency-preserving

18

3NF Synthesis Algorithm

¨ Inputs: set of functional dependences F, on a schema R

let Fc be a canonical cover for F ;
i := 0;
for each functional dependency a ® b in Fc do

if none of the schemas Rj, j = 1, 2, …, i contains (a ∪ b) then
i := i + 1;
Ri := (a ∪ b)

end if
done
if no schema Rj, j = 1, 2, …, i contains a candidate key for R then
i := i + 1;
Ri := any candidate key for R

end if
return (R1, R2, …, Ri)

19

BCNF vs. 3NF

¨ Boyce-Codd Normal Form:
¤ Eliminates more redundant information than 3NF
¤ Some functional dependencies become expensive to enforce

n The conditions to enforce involve multiple relations
¤ Overall, a very desirable normal form!

¨ Third Normal Form:
¤ All [more] dependencies are [probably] easy to enforce…
¤ Allows more redundant information, which must be kept

synchronized by the database application!
¤ Personal banker example:
works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)
n Branch names must be kept synchronized between these relations!

20

BCNF and 3NF vs. SQL

¨ SQL constraints:
¤ Only key constraints are fast and easy to enforce!
¤ Only easy to enforce functional dependencies a ® b if a is

a key on some table!
¤ Other functional dependencies (even “easy” ones in 3NF)

may require more expensive constraints, e.g. CHECK
¨ For SQL databases with materialized views:

¤ Can decompose a schema into BCNF
¤ For dependencies a ® b not preserved in decomposition,

create materialized view joining all relations in dependency
¤ Enforce unique(a) constraint on materialized view

¨ Impacts both space and performance, but it works…

21

Multivalued Attributes

¨ E-R schemas can have multivalued attributes
¨ 1NF requires only atomic attributes

¤ Not a problem; translating to relational model leaves
everything atomic

¨ Employee example:
employee(emp_id, emp_name)
emp_deps(emp_id, dependent)
emp_nums(emp_id, phone_num)

¨ What are the requirements on these schemas for what
tuples must appear?

employee
emp_id
emp_name
{ phone_num }
{ dependent }

22

Multivalued Attributes (2)

¨ Example data:

¤ Every distinct value of multivalued attribute requires a
separate tuple, including associated value of emp_id

¨ A consequence of 1NF, in fact!
¤ If attributes could be nonatomic, could just store list of

values in the appropriate column!
¤ 1NF requires extra tuples to represent multivalues

emp_id emp_name
125623 Rick

emp_id dependent
125623
125623

Jeff
Alice

emp_id phone_num
125623
125623

555-8888
555-2222employee

emp_deps emp_nums

23

Independent Multivalued Attributes

¨ Question is trickier when a schema stores several
independent multivalued attributes

¨ Proposed combined schema:
employee(emp_id, emp_name)
emp_info(emp_id, dependent, phone_num)

¨ What tuples must appear in emp_info ?
¤ emp_info is a relation
¤ If an employee has M dependents and N phone numbers,
emp_info must contain M ´ N tuples
n Exactly what we get if we natural-join emp_deps and emp_nums

¤ Every combination of the employee’s dependents and their
phone numbers

24

Independent Multivalued Attributes

¨ Example data:

¨ Clearly has unnecessary redundancy
¨ Can’t formulate functional dependencies to represent

multivalued attributes
¨ Can’t use BCNF or 3NF decompositions to eliminate

redundancy in these cases

emp_id emp_name
125623 Rick

emp_id dependent phone_num
125623
125623
125623
125623

Jeff
Jeff
Alice
Alice

555-8888
555-2222
555-8888
555-2222employee

emp_info

25

Multivalued Attributes Example

¨ Two employees: Rick and Bob
¤ Both share a phone number at work
¤ Both have two kids
¤ Both have a kid named Alice

¨ Can’t use functional dependencies
to reason about this situation!
¤ emp_id® phone_num doesn’t hold

since an employee can have several
phone numbers

¤ phone_num® emp_id doesn’t hold
either, since several employees can
have the same phone number

¤ Same with emp_id and dependent…

emp_id emp_name
125623
127341

Rick
Bob

emp_id dependent
125623
125623
127341
127341

Jeff
Alice
Alice
Clara

emp_id phone_num
125623
125623
127341

555-8888
555-2222
555-2222

employee

emp_deps

emp_nums

26

Dependencies

¨ Functional dependencies rule out what tuples can
appear in a relation
¤ If A® B holds, then tuples cannot have same value for A

but different values for B
¤ Also called equality-generating dependencies

¨ Multivalued dependencies specify what tuples must
be present
¤ To represent a multivalued attribute’s values properly,

a certain set of tuples must be present
¤ Also called tuple-generating dependencies

27

Multivalued Dependencies

¨ Given a relation schema R
¤ Attribute-sets a Î R, b Î R
¤ a b is a multivalued dependency
¤ “a multidetermines b”

¨ A multivalued dependency a b holds on R if, in
any legal relation r(R):
For all pairs of tuples t1 and t2 in r such that t1[a] = t2[a],
There also exists tuples t3 and t4 in r such that:
¤ t1[a] = t2[a] = t3[a] = t4[a]
¤ t1[b] = t3[b] and t2[b] = t4[b]
¤ t1[R – b] = t4[R – b] and t2[R – b] = t3[R – b]

®®

®®

28

Multivalued Dependencies (2)

¨ Multivalued dependency a b holds on R if, in any
legal relation r(R):
For all pairs of tuples t1 and t2 in r such that t1[a] = t2[a],
There also exists tuples t3 and t4 in r such that:
¤ t1[a] = t2[a] = t3[a] = t4[a]
¤ t1[b] = t3[b] and t2[b] = t4[b]
¤ t1[R – b] = t4[R – b] and t2[R – b] = t3[R – b]

¨ Pictorially:

®®

a b R – (a ∪ b)
t1
t2

a1…ai
a1…ai

ai+1…aj
bi+1…bj

aj+1…an
bj+1…bn

t3
t4

a1…ai
a1…ai

ai+1…aj
bi+1…bj

bj+1…bn
aj+1…an

29

Multivalued Dependencies (3)

¨ Multivalued dependency:

¨ If a b then R – (a ∪ b) is independent of this fact
¤ Every distinct value of b must be associated once with every distinct

value of R – (a ∪ b)
¨ Let g = R – (a ∪ b)

¤ If a b then also a g
¤ a b implies a g
¤ Sometimes written a b | g

a b R – (a ∪ b)
t1
t2

a1…ai
a1…ai

ai+1…aj
bi+1…bj

aj+1…an
bj+1…bn

t3
t4

a1…ai
a1…ai

ai+1…aj
bi+1…bj

bj+1…bn
aj+1…an

®®

®®
®® ®®
®®

®®

30

Trivial Multivalued Dependencies

¨ a b is a trivial multivalued dependency on R if all
relations r(R) satisfy the dependency

¨ Specifically, a b is trivial if b Í a, or if
a ∪ b = R

¨ Employee examples:
¤ For schema emp_deps(emp_id, dependent),
emp_id dependent is trivial

¤ For emp_info(emp_id, dependent, phone_num),
emp_id dependent is not trivial

®®

®®

®®

®®

31

Inference Rules

¨ Can reason about multivalued dependencies, just like
functional dependencies
¤ There is a set of complete, sound inference rules for MVDs

¨ Example inference rules:
¤ Complementation rule:

n If a b holds on R, then a R – (a ∪ b) holds
¤ Multivalued augmentation rule:

n If a b holds, and g Í R, and d Í g, then ga db holds
¤ Multivalued transitivity rule:

n If a b and b g holds, then a g – b holds
¤ Coalescence rule:

n If a b holds, and g Í b, and there is a d such that d Í R, and
d ∩ b = ∅, and d ® g, then a ® g holds

®®

®®

®®

®® ®®

®® ®®®®

32

Functional Dependencies

¨ Functional dependencies are also multivalued
dependencies

¨ Replication rule:
¤ If a ® b, then a b too
¤ Note there is an additional constraint from a ® b: each

value of a has at most one associated value for b
¨ Usually, functional dependencies are not stated as

multivalued dependencies
¤ The extra caveat is important, but not obvious in notation
¤ Also, functional dependencies are easier to reason about!

®®

33

Closures and Restrictions

¨ For a set D of functional and multivalued
dependencies, can compute closure D+

¤ Use inference rules for both functional and multivalued
dependencies to compute closure

¨ Sometimes need the restriction of D+ to a relation
schema R, too

¨ The restriction of D to a schema Ri includes:
¤ All functional dependencies in D+ that include only attributes

in Ri
¤ All multivalued dependencies of the form a b ∩ Ri ,

where a Í Ri , and a b is in D+®®
®®

34

Fourth Normal Form

¨ Given:
¤ Relation schema R
¤ Set of functional and multivalued dependencies D

¨ R is in 4NF with respect to D if:
¤ For all multivalued dependencies a b in D+, where
a Í R and b Í R, at least one of the following holds:
n a b is a trivial multivalued dependency
n a is a superkey for R

¤ Note: If a ® b then a b
¨ A database design is in 4NF if all schemas in the

design are in 4NF

®®

®®

®®

35

4NF and BCNF

¨ Main difference between 4NF and BCNF is use of
multivalued dependencies instead of functional
dependencies

¨ Every schema in 4NF is also in BCNF
¤ If a schema is not in BCNF then there is a nontrivial

functional dependency a ® b such that a is not a superkey
for R

¤ If a ® b then a b®®

36

4NF Decompositions

¨ Decomposition rule is very similar to BCNF
¨ If schema R is not in 4NF with respect to a set of

multivalued dependencies D :
¤ There is some nontrivial dependency a b in D+

where a Í R and b Í R, and a is not a superkey of R
n Also constrain that a ∩ b = ∅

¤ Replace R with two new schemas:
n R1 = (a ∪ b)
n R2 = (R – b)

®®

37

Employee Information Example

¨ Combined schema:
employee(emp_id, emp_name)
emp_info(emp_id, dependent, phone_num)
¤ Also have these dependencies:

n emp_id® emp_name
n emp_id dependent
n emp_id phone_num

¨ emp_info is not in 4NF
¨ Following the rules for 4NF decomposition produces:

(emp_id, dependent)
(emp_id, phone_num)
¤ Note: Each relation’s candidate key is the entire relation. The

multivalued dependencies are trivial.

®®
®®

38

Lossless Decompositions

¨ Can also define lossless decomposition with
multivalued dependencies
¤ R1 and R2 form a lossless decomposition of R if at least

one of these dependencies is in D+ :
R1 ∩ R2 R1

R1 ∩ R2 R2

®®
®®

39

Beyond Fourth Normal Form?

¨ Additional normal forms with various constraints
¨ Example: join dependencies
¨ Given R, and a decomposition R1 and R2 where
R1 ∪ R2 = R :
¤ The decomposition is lossless if, for all legal instances of r(R),
P (r) P (r) = r

¨ Can state this as a join dependency: *(R1, R2)
¤ This is actually identical to a multivalued dependency!
¤ *(R1, R2) is equivalent to R1 ∩ R2 R1 | R2

R1 R2

®®

40

Join Dependencies and 5NF

¨ Join dependencies (JD) are a generalization of
multivalued dependencies (MVD)
¤ Can specify JDs involving N relation schemas, N ≥ 2
¤ JDs are equivalent to MVDs when N = 2
¤ Can easily construct JDs where N > 2, with no equivalent set

of MVDs
¨ Project-Join Normal Form (a.k.a. PJNF or 5NF):

¤ A relation schema R is in PJNF with respect to a set of join
dependencies D if, for all JDs in D+ of the form
*(R1, R2, …, Rn) where R1 ∪ R2 ∪ … ∪ Rn = R, at least one
of the following holds:
n *(R1, R2, …, Rn) is a trivial join dependency
n Every Ri is a superkey for R

41

Join Dependencies and 5NF (2)

¨ If a schema is in Project-Join Normal Form then it is
also in 4NF (and thus, in BCNF)
¤ Every multivalued dependency is also a join dependency
¤ (Every functional dependency is also a multivalued

dependency)

¨ One small problem:
¤ There isn’t a complete, sound set of inference rules for join

dependencies!
¤ Can’t reason about our set of join dependencies D…
¤ This limits PJNF’s real-world usefulness

42

Domain-Key Normal Form

¨ Domain-key normal form (DKNF) is an even more
general normal form, based on:
¤ Domain constraints: what values may be assigned to

attribute A
n Usually inexpensive to test, even with CHECK constraints

¤ Key constraints: all attribute-sets K that are a superkey for
a schema R (i.e. K® R)
n Almost always inexpensive to test

¤ General constraints: other predicates on valid relations in
a schema
n Could be very expensive to test!

¨ A schema R is in DKNF if the domain constraints and
key constraints logically imply the general constraints
¤ An “ideal” normal form difficult to achieve in practice…

43

