FUNCTIONAL DEPENDENCY
THEORY Il

Canonical Cover

A canonical cover F_ for F is a set of functional
dependencies such that:

F logically implies all dependencies in F.
F. logically implies all dependencies in F

Can’t infer any functional dependency in F_ from other
dependencies in F_

No functional dependency in F_ contains an extraneous
attribute
Left side of all functional dependencies in F_ are unique

There are no two dependencies o, — 3; and o, — B, in F,
such that o, = a,

Extraneous Attributes

Given a set F of functional dependencies

An attribute in a functional dependency is extraneous if
it can be removed from F without changing F*

Formally: given F, and o — [

If A € a, and F logically implies
(F = {o = B}) U {(ao = A) = B}, then A is extraneous

If A e, and (F={a — B}) U {a — (B - A)} logically
implies F, then A is extraneous

i.e. generate a new set of functional dependencies F' by
replacing a — B with o — ([— A)
See if F'logically implies F

Testing Extraneous Attributes

Given relation schema R, and a set F of functional
dependencies that hold on R

Attribute Ain o — [
If A € o (i.e. Ais on left side of the dependency),
then let y = a — {A}

See if Yy = B can be inferred from F

Compute Y* under F

If B € vy then A is extraneous in o

e.g. if AB — C and you want to see if B is
extraneous, can see if you can infer A — C from F

Testing Extraneous Attributes (2)

Given relation schema R, and a set F of functional
dependencies that hold on R

Attribute A in o0 — 3

If A € 3 (on right side of the dependency), then try the
altered set F'

F'=(F={a—> B U{o—(B-A)}

See if @ — A can be inferred from F'

Compute o under F'

If o™ includes A then A is extraneous in 3

e.g. if A — BC and you want to see if B is extraneous, you
can already infer A — B from this dependency

Must generate F' with only A — C, and if you can infer
A — B from F', then B was indeed extraneous

Computing Canonical Cover

A simple way to compute the canonical cover of F

F.=F
repeat
apply union rule to replace dependencies in F_ of form
o, = B, and a, = B, with a; = BB,
find a functional dependency a — 3 in F_ with an
extraneous attribute
/* Use F_for the extraneous attribute test, not F Il */

if an extraneous attribute is found, delete it from oo — [3
until F_ stops changing

Canonical Cover Example

Functional dependencies F on schema (A, B, C)
F={A—>BC,B—>C,A—> B, AB—>C}
Find F_

Apply union ruleto A— BC and A —> B
Left with: { A— BC,B—> C, AB—> C}

A is extraneous in AB > C
B — C is logically implied by F (obvious)
Left with. {A —> BC,B —> C}

C is extraneous in A — BC
Logically implied by A—> B, B —> C

F.={A—>B,B—>C}

Canonical Covers

A set of functional dependencies can have multiple
canonical covers

Example:
F={A—>BC,B—> AC,C —> AB}
Has several canonical covers:

F.={A—>BB—>CC— A}
F.={A—>B,B—> AC,C > B}
F.={A—>C,C—>BB—>A}
F.={A—>C,B—>C,C— AB}
F.={A—>BC,B—>AC—> A}

Another Example

Functional dependencies F on schema (A, B, C, D)
F={A—>B,BC—>D,AC—>D}
Find F_

In this case, it may look like F_ = F...

However, can infer AC —> D from A —> B, BC —> D

(pseudotransitivity), so AC — D is extraneous in F
Therefore, F, ={ A — B, BC —> D }

Alternately, can argue that D is extraneous in AC — D

With F'={ A — B, BC — D }, we see that {AC}* = ABCD,
so D is extraneous in AC —> D

(If you eliminate the entire RHS of a functional dependency,
it goes away)

Lossy Decompositions

Some schema decompositions lose information

Example:
employee(emp id, emp_name, phone, title, salary, start_date)

Decomposed into:

emp_ids(emp id, emp_name)

emp_details(emp_name, phone, title, salary, start_date)
Problem:

emp_name doesn’t uniquely identify employees

This is a lossy decomposition

Lossless Decompositions

Given:
Relation schema R, relation r(R)
Set of functional dependencies F
Let R, and R, be a decomposition of R
R,UR, =R
The decomposition is lossless if, for all legal
instances of r:

Lg(r))X 11g(r) =r
A simple definition...

Lossless Decompositions (2)

Can define with functional dependencies:

R, and R, form a lossless decomposition of R if at least
one of these dependencies is in F':

R,N R, —> R,
R,N R, = R,
RN R, forms a superkey of R, and/or R,

Test for superkeys using attribute-set closure

Decomposition Examples (1)

The employee example:

employee(emp id, emp_name, phone, title, salary,
start_date)

Decomposed into:

emp_ids(emp _id, emp_name)

emp_details(emp_name, phone, title, salary, start_date)

emp_name is not a superkey of emp_ids or
emp_details, so the decomposition is lossy

Decomposition Examples (2)

The bor_loan example:

bor_loan(cust_id, loan _id, amount)

Decomposed into:
borrower(cust_id, loan_id)

loan(loan _id, amount) (loan_id — loan_id, amount)

loan_id is a superkey of loan, so the decomposition
is lossless

BCNF Decompositions

If R is a schema not in BCNF:

There is at least one nontrivial functional dependency
o —> [such that o is not a superkey for R

For simplicity, also require thataa N 3 = @
(if o N B # @ then (a0 N B) is extraneous in)

Replace R with two schemas:
R, = (o U B)
R, = (R-P)
(was R— (B —a.), but B—a =3, since a N B = Q)

BCNF decomposition is lossless

R, NR, =

o is a superkey of R,

o also appears in R,

Dependency Preservation

Some schema decompositions are not dependency-
preserving

Functional dependencies that span multiple relation
schemas are hard to enforce

e.g. BCNF may require decomposition of a schema for
one dependency, and make it hard to enforce another

dependency

Can test for dependency preservation using
functional dependency theory

Dependency Preservation (2)

Given:

A set F of functional dependencies on a schema R

R,, R,, ..., R, are a decomposition of R
The restriction of F to R; is the set F; of functional
dependencies in F* that only has attributes in R.

Each F; contains functional dependencies that can be
checked efficiently, using only R,

Find all functional dependencies that can be checked
efficiently
FF=F,UF,U...UF,

If F'* = F* then the decomposition is dependency-
preserving

Third Normal Form Schemas

Can generate a 3NF schema from a set of functional
dependencies F

Called the 3NF synthesis algorithm

Instead of decomposing an initial schema, generates

schemas from a set of dependencies

Given a set F of functional dependencies

Uses the canonical cover F,

Ensures that resulting schemas are dependency-preserving

3NF Synthesis Algorithm

Inputs: set of functional dependences F, on a schema R

let F. be a canonical cover for F ;
i:=0;
for each functional dependency oo — B in F. do
if none of the schemas R, j =1, 2, ..., i contains (oc U [3) then

=i+ 1;
R;:= (a0 U)
end if
done
if no schema R, | =1, 2, ..., i contains a candidate key for R then
=i+ 1;
R. := any candidate key for R
end if

return (R,, R,, ..., R)

BCNF vs. 3NF

Boyce-Codd Normal Form:
Eliminates more redundant information than 3NF

Some functional dependencies become expensive to enforce
The conditions to enforce involve multiple relations

Overall, a very desirable normal form!
Third Normal Form:

All [more] dependencies are [probably] easy to enforce...

Allows more redundant information, which must be kept
synchronized by the database application!
Personal banker example:
works_in(emp_id, branch_name)
cust_banker_branch(cust _id, branch_name, emp_id, type)
Branch names must be kept synchronized between these relations!

BCNF and 3NF vs. SQL

SQL constraints:

Only key constraints are fast and easy to enforcel!

Only easy to enforce functional dependencies oo — 3 if a is
a key on some table!

Other functional dependencies (even “easy” ones in 3NF)
may require more expensive constraints, e.g. CHECK

For SQL databases with materialized views:

Can decompose a schema into BCNF

For dependencies oo — [3 not preserved in decomposition,
create materialized view joining all relations in dependency

Enforce unique(a) constraint on materialized view

Impacts both space and performance, but it works...

Multivalued Attributes

E-R schemas can have multivalued attributes

I1NF requires only atomic attributes

Not a problem; translating to relational model leaves
everything atomic

Employee example: employee
employee(emp_id, emp_name) emp_id
. emp_name
emp_deps(emp_id, dependent) { phone_num}
{ dependent }

emp_nums(emp_id, phone_num)
What are the requirements on these schemas for what
tuples must appear?

Multivalued Attributes (2)

Example data:

: emp_id | dependent emp_id | phone _num
emp_id | emp_name
125623 Rick 125623 Jeff 125623 555-8888
ic :
125623 Alice 125623 555-2222
employee
emp_deps emp_nums

Every distinct value of multivalued attribute requires a
separate tuple, including associated value of emp_id

A consequence of 1NF, in fact!

If attributes could be nonatomic, could just store list of
values in the appropriate column!

1NF requires extra tuples to represent multivalues

Independent Multivalued Attributes

Quuestion is trickier when a schema stores several
independent multivalued attributes

Proposed combined schema:

employee(emp _id, emp_name)

emp_info(emp_id, dependent, phone_num)

What tuples must appear in emp_info ¢
emp_info is a relation

If an employee has M dependents and N phone numbers,
emp_info must contain M x N tuples

Exactly what we get if we natural-join emp_deps and emp_nums

Every combination of the employee’s dependents and their
phone numbers

Independent Multivalued Attributes

Example data: emp_id | dependent | phone_num
- 125623 Jeff 555-8888
emp_id | emp_name 125623 Jeff 555-2222
125623 Rick 125623 Alice 555-8888
employee 125623 Alice 555-2222
emp_info

Clearly has unnecessary redundancy

Can’t formulate functional dependencies to represent
multivalued attributes

Can’t use BCNF or 3NF decompositions to eliminate
redundancy in these cases

Multivalued Attributes Example

Two employees: Rick and Bob
Both share a phone number at work
Both have two kids
Both have a kid named Alice

Can’t use functional dependencies
to reason about this situation!
emp_id — phone_num doesn’t hold

since an employee can have several
phone numbers

phone_num — emp_id doesn’t hold
either, since several employees can
have the same phone number

Same with emp_id and dependent...

emp_id | emp_name
125623 Rick
127341 Bob
employee
emp_id | phone _num
125623 555-8888
125623 555-2222
127341 555-2222
emp_nums
emp_id | dependent
125623 Jeff
125623 Alice
127341 Alice
127341 Clara

emp_deps

Dependencies

Functional dependencies rule out what tuples can
appear in a relation

If A — B holds, then tuples cannot have same value for A
but different values for B

Also called equality-generating dependencies

Multivalued dependencies specify what tuples must
be present

To represent a multivalued attribute’s values properly,
a certain set of tuples must be present

Also called tuple-generating dependencies

Multivalued Dependencies

Given a relation schema R
Attribute-sets o € R, 3 € R
o —>> B is a multivalued dependency
“a multidetermines [3”
A multivalued dependency o.—> 3 holds on R if, in
any legal relation r(R):
For all pairs of tuples t; and t, in r such that t,[a] = t,[a],
There also exists tuples t; and t, in r such that:
hlal = tla] = t[a] = t4]a]
Bl = #3[B] and ,[B] = #,[P]
H[R = P] = #4IR —] and t,[R — B] = #3[R — P]

Multivalued Dependencies (2)

Multivalued dependency o.—3 3 holds on R if, in any
legal relation r(R):

For all pairs of tuples t; and t, in r such that t,[a] = t,[a],
There also exists tuples t; and t, in r such that:

hlal = tla] = t[a] = t[a]

HIB1 = HIB] and +,[B] = £,[B]

hIR — B] = £,[R — B] and t,[R — B] = £;[R — B]
Pictorially:

o B R— (o U B)
ty | a4...a; | @jq...3 Qjq...8p
t2 a1...a,- bi+1"'bj bj+1---bn
t3 a1---ai a,+1 ..aj bj+1...bn
t4 a1...a,- bi+1"'bj aj+1...an

Multivalued Dependencies (3)

Multivalued dependency:

o B R— (o U B)
ty | a4...a; | @jsq...9 Qjq...8p
t2 a1---ai bi+1...bj bj+ ..bn
t3 a1---ai ai+1...aj bj+ ..bn
t4 a1---ai bi+1...bj aj+ ..an

If oo.—>> 3 then R — (a0 U P) is independent of this fact
Every distinct value of 3 must be associated once with every distinct

value of R — (a0 U)
lety =R —(a U PB)

If oo —>> 3 then also o —>>y

o = P implies o =y

Sometimes written o > 3 | vy

Trivial Multivalued Dependencies

o —> [is a trivial multivalued dependency on R if all
relations r(R) satisfy the dependency

Specifically, oo —>> B is trivial if B < «, or if
oUP=R
Employee examples:

For schema emp_deps(emp_id, dependent),
emp_id —> dependent is trivial

For emp_info(emp_id, dependent, phone_num),
emp_id —> dependent is not trivial

Inference Rules

Can reason about multivalued dependencies, just like
functional dependencies

There is a set of complete, sound inference rules for MVDs

Example inference rules:
Complementation rule:
If oo —> 3 holds on R, then oo —» R — (a0 U [3) holds
Multivalued augmentation rule:
If oo —> 3 holds, and Y < R, and 0 C v, then yo.—> 03 holds
Multivalued transitivity rule:
If oo —» B and B —» 7y holds, then oo —» ¥ — 3 holds

Coalescence rule:

If oo —> 3 holds, and y < B, and there is a 0 such that 6 < R, and
ON B =0, and 6 — v, then oo = Y holds

Functional Dependencies

Functional dependencies are also multivalued
dependencies

Replication rule:
If o — 3, then oo —» 3 too

Note there is an additional constraint from oo — [B: each
value of a has at most one associated value for [3

Usually, functional dependencies are not stated as
multivalued dependencies

The extra caveat is important, but not obvious in notation

Also, functional dependencies are easier to reason about!

Closures and Restrictions

For a set D of functional and multivalued
dependencies, can compute closure D

Use inference rules for both functional and multivalued
dependencies to compute closure

Sometimes need the restriction of D' to a relation
schema R, too

The restriction of D to a schema R; includes:

All functional dependencies in D' that include only attributes
in R,

All multivalued dependencies of the form a—> 3 N R,
where oo C R, , and a.—» B is in D*

Fourth Normal Form

Given:
Relation schema R

Set of functional and multivalued dependencies D

R is in 4ANF with respect to D if:

For all multivalued dependencies o —» [3 in D*, where
o C R and 3 < R, at least one of the following holds:

o.—» [is a trivial multivalued dependency
a is a superkey for R

Note: If a — [3 then o —>>f3

A database design is in 4NF if all schemas in the
design are in 4NF

ANF and BCNF

Main difference between 4NF and BCNF is use of
multivalued dependencies instead of functional
dependencies

Every schema in 4NF is also in BCNF

If a schema is not in BCNF then there is a nontrivial

functional dependency a — 3 such that a is not a superkey
for R

If o > B then a—» 3

ANF Decompositions

Decomposition rule is very similar to BCNF

If schema R is not in 4NF with respect to a set of
multivalued dependencies D :

There is some nontrivial dependency o —> [3 in D¥
where a0 C R and 3 C R, and o is not a superkey of R

Also constrainthataa N 3 = @
Replace R with two new schemas:

R, = (a U)

R, = (R-P)

Employee Information Example

Combined schema:
employee(emp_id, emp_name)
emp_info(emp_id, dependent, phone_num)
Also have these dependencies:
emp_id — emp_name
emp_id —> dependent
emp_id —> phone_num

emp_info is not in 4NF

Following the rules for 4NF decomposition produces:
(emp_id, dependent)
(emp_id, phone_num)

Note: Each relation’s candidate key is the entire relation. The
multivalued dependencies are trivial.

Lossless Decompositions

Can also define lossless decomposition with
multivalued dependencies

R, and R, form a lossless decomposition of R if at least
one of these dependencies is in D™ :

R, N R, > R,
R, N R, &> R,

Beyond Fourth Normal Form?

Additional normal forms with various constraints
Example: join dependencies

Given R, and a decomposition R, and R, where

R, UR,=R:
The decomposition is lossless if, for all legal instances of r(R),
Hg(r) x Hgfr) =r

Can state this as a join dependency: *(R,, R,)
This is actually identical to a multivalued dependency!

*(R,, R,) is equivalentto R, N R, > R, | R,

Join Dependencies and 5NF

Join dependencies (JD) are a generalization of
multivalued dependencies (MVD)

Can specify JDs involving N relation schemas, N > 2
JDs are equivalent to MVDs when N = 2

Can easily construct JDs where N > 2, with no equivalent set
of MVDs

Project-Join Normal Form (a.k.a. PJNF or 5NF):

A relation schema R is in PJNF with respect to a set of join
dependencies D if, for all JDs in D* of the form

*(Ry, Ry, ..., R,)) where R, UR, U ... UR, =R, at least one
of the following holds:

*(Ry, Ry, ..., R,) is a trivial join dependency

Every R. is a superkey for R

Join Dependencies and 5NF (2)

If a schema is in Project-Join Normal Form then it is
also in 4NF (and thus, in BCNF)
Every multivalued dependency is also a join dependency

(Every functional dependency is also a multivalued
dependency)

One small problem:

There isn’t a complete, sound set of inference rules for join
dependencies!

Can’t reason about our set of join dependencies D...

This limits PJNF’s real-world usefulness

Domain-Key Normal Form

Domain-key normal form (DKNF) is an even more
general normal form, based on:

Domain constraints: what values may be assigned to
attribute A

Usually inexpensive to test, even with CHECK constraints

Key constraints: all attribute-sets K that are a superkey for
a schema R (i.e. K = R)

Almost always inexpensive to test

General constraints: other predicates on valid relations in
a schema
Could be very expensive to test!

A schema R is in DKNF if the domain constraints and
key constraints logically imply the general constraints

An “ideal” normal form difficult to achieve in practice...

