FUNCTIONAL DEPENDENCY THEORY

CS121: Relational Databases Fall 2018 – Lecture 19

Last Lecture

- Normal forms specify "good schema" patterns
- □ First normal form (1NF):
 - All attributes must be atomic
 - Easy in relational model, harder/less desirable in SQL
- Boyce-Codd normal form (BCNF):
 - Eliminates redundancy using functional dependencies
 - Given a relation schema R and a set of dependencies F
 - For all functional dependencies $\alpha \rightarrow \beta$ in F^+ , where $\alpha \cup \beta \subseteq R$, at least one of these conditions must hold:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for *R*

Last Lecture (2)

- Can convert a schema into BCNF
- \square If *R* is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta \in F^+$ such that α is not a superkey for *R*
- Replace R with two schemas:
 - (α U β)
 - $(R (\beta \alpha))$
- May need to repeat this decomposition process until all schemas are in BCNF

Functional Dependency Theory

- Important to be able to reason about functional dependencies!
- Main question:
 - What functional dependencies are logically implied by a set F of functional dependencies?
- Other useful questions:
 - Which attributes are functionally determined by a particular attribute-set?
 - What minimal set of functional dependencies must actually be enforced in a database?
 - Is a particular schema decomposition lossless?
 - Does a decomposition preserve dependencies?

Rules of Inference

□ Given a set F of functional dependencies

- Actual dependencies listed in F may be insufficient for normalizing a schema
- Must consider all dependencies <u>logically implied</u> by F
- For a relation schema R
 - A functional dependency f on R is logically implied by F on R if every relation instance r(R) that satisfies F also satisfies f
- Example:
 - Relation schema R(A, B, C, G, H, I)
 - Dependencies:

 $A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$

D Logically implies: $A \rightarrow H$, $CG \rightarrow HI$, $AG \rightarrow I$

Rules of Inference (2)

- □ <u>Axioms</u> are rules of inference for dependencies
- This group is called Armstrong's axioms
- \Box Greek letters α , β , γ , ... represent attribute sets
- Reflexivity rule:
 - If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ holds.
- Augmentation rule:
 - If $\alpha \rightarrow \beta$ holds, and γ is a set of attributes, then $\gamma \alpha \rightarrow \gamma \beta$ holds.
- Transitivity rule:

If $\alpha \rightarrow \beta$ holds, and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ holds.

Computing Closure of F

Can use Armstrong's axioms to compute F^+ from F \Box F is a set of functional dependencies

 $F^+ = F$

repeat for each functional dependency f in F^+ apply reflexivity and augmentation rules to fadd resulting functional dependencies to F^+ for each pair of functional dependencies f_1 , f_2 in F^+ if f_1 and f_2 can be combined using transitivity add resulting functional dependency to F^+ until F^+ stops changing

Armstrong's Axioms

Axioms are <u>sound</u>

They don't generate any incorrect functional dependencies

Axioms are <u>complete</u>

- Given a set of functional dependencies F, repeated application generates all F⁺
- \square F^+ could be <u>very</u> large
 - LHS and RHS of a dependency are subsets of R
 - $\square A set of size n has 2^n subsets$
 - $2^n \times 2^n = 2^{2n}$ possible functional dependencies in R !

More Rules of Inference

- Additional rules can be proven from Armstrong's axioms
 - **\square** These make it easier to generate F^+
- Union rule:
 - If $\alpha \rightarrow \beta$ holds, and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds.
- Decomposition rule:

If $\alpha \rightarrow \beta \gamma$ holds, then $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds.

Pseudotransitivity rule:

If $\alpha \rightarrow \beta$ holds, and $\gamma\beta \rightarrow \delta$ holds, then $\alpha\gamma \rightarrow \delta$ holds.

Attribute-Set Closure

- \square How to tell if an attribute-set α is a superkey?
 - $\blacksquare \text{ If } \alpha \to R \text{ then } \alpha \text{ is a superkey.}$
 - $\hfill\square$ What attributes are functionally determined by an attribute-set α ?
- □ Given:
 - \square Attribute-set α
 - Set of functional dependencies F
 - The set of all attributes functionally determined by α under
 F is called the closure of α under F
 - \blacksquare Written as α^+

Attribute-Set Closure (2)

- \square It's easy to compute the closure of attribute-set α !
 - Algorithm is very simple
- Inputs:
 - $f \square$ attribute-set lpha
 - set of functional dependencies F

 $\alpha^+ = \alpha$

repeat

for each functional dependency $\beta \rightarrow \gamma$ in *F* if $\beta \subseteq \alpha^+$ then $\alpha^+ = \alpha^+ \cup \gamma$ until α^+ stops changing

Attribute-Set Closure (3)

- \Box Can easily test if α is a superkey
 - **Compute** α^+
 - If $R \subset \alpha^+$ then α is a superkey of R
- Can also use to identify functional dependencies

 $\square \alpha \rightarrow \beta$ holds if $\beta \subset \alpha^+$

Find closure of α under F; if it contains β then $\alpha \rightarrow \beta$ holds!

- **\square** Can compute F^+ with attribute-set closure too:
 - For each $\gamma \subseteq R$, find closure γ^+ under F

• We know that $\gamma \rightarrow \gamma^+$

For each subset $S \subseteq \gamma^+$, add functional dependency $\gamma \to S$

Attribute-Set Closure Example

 \square Relation schema R(A, B, C, G, H, I)Dependencies: $A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$ \square Is AG a superkey of R ? \Box Compute (AG)⁺ • Start with $\alpha^+ = AG$ $\square A \rightarrow B, A \rightarrow C$ cause $\alpha^+ = ABCG$ \square CG \rightarrow H, CG \rightarrow I cause α^+ = ABCGHI \square AG is a superkey of R !

Attribute-Set Closure Example (2)

- $\square \text{ Relation schema } R(A, B, C, G, H, I)$
 - Dependencies: $A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H$
- □ Is AG a candidate key of R ?
 - A candidate key is a minimal superkey
 - Compute attribute-set closure of all proper subsets of superkey; if we get R then it's not a candidate key
- Compute the attribute-set closures under F
 - $\square A^+ = ABCH$
 - □ G⁺ = G
- □ AG is indeed a candidate key!

BCNF Revisited

- \square BCNF algorithm states, if R_i is a schema not in BCNF:
 - There is at least one nontrivial functional dependency $\alpha \rightarrow \beta$ such that α is not a superkey for R_i

Two points:

 $\square \alpha \rightarrow \beta \in F^+$, not just in F

\square For R_i , only care about func. deps. where $\alpha \cup \beta \in R_i$

- \square How do we tell if R_i is not in BCNF?
 - Can use attribute-set closure under F to find if there is a dependency in F⁺ that affects R_i
 - lacksquare For each proper subset $lpha \subset {\it R}_i$, compute $lpha^+$ under ${\it F}$
 - □ If α^+ doesn't contain R_i , but α^+ does contain any attributes in $R_i - \alpha$, then R_i is <u>not</u> in BCNF

BCNF Revisited (2)

- □ If α^+ doesn't contain R_i , but α^+ does contain any attributes in $R_i \alpha$, then R_i is not in BCNF
- □ If α^+ doesn't contain R_i , what do we know about α with respect to R_i ?
 - $\square \alpha$ is not a superkey of R_i
- \square If α^+ contains attributes in $R_i \alpha$:
 - Let $\beta = R_i \cap (\alpha^+ \alpha)$
 - We know there is some non-trivial functional dependency $\alpha \rightarrow \beta$ that holds on R_i
- □ Since $\alpha \rightarrow \beta$ holds on R_i , but α is not a candidate key of R_i , we know that R_i cannot be in BCNF.

BCNF Example

- □ Start with schema R(A, B, C, D, E), and
 - $F = \{ A \rightarrow B, BC \rightarrow D \}$
- \Box Is *R* in BCNF?
 - Obviously not.
 - □ Using $A \rightarrow B$, decompose into $R_1(\underline{A}, B)$ and $R_2(A, C, D, E)$
- □ Are we done?
 - Pseudotransitivity rule says that if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$
 - \square AC \rightarrow D also holds on R_2 , so R_2 is not in BCNF!
 - Or, compute $\{AC\}^+ = ABCD$. Again, R_2 is not in BCNF.

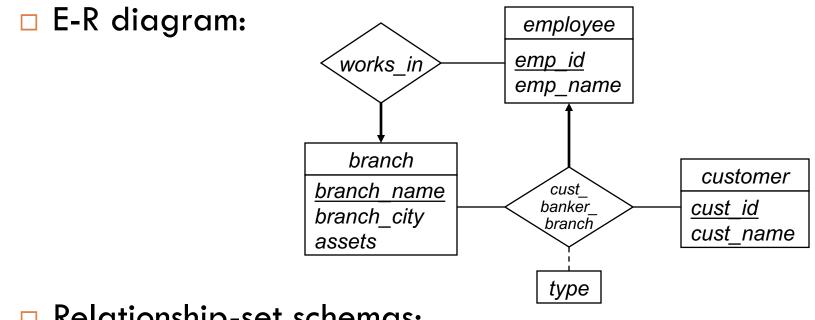
Database Constraints

- Enforcing database constraints can easily become very expensive
 - Especially CHECK constraints!
- Best to define database schema such that constraint enforcement is <u>efficient</u>
- Ideally, enforcing a functional dependency involves only one relation
 - Then, can specify a key constraint instead of a multitable CHECK constraint!

Example: Personal Bankers

- Bank sets a requirement on employees:
 - Each employee can work at only one branch
 emp_id → branch_name
- Bank wants to give customers a personal banker at each branch
 - At each branch, a customer has only one personal banker
 - (A customer could have personal bankers at multiple branches.)
 - □ cust_id, branch_name → emp_id

Personal Bankers



Relationship-set schemas:

works_in(emp_id, branch_name)

cust_banker_branch(cust_id, branch_name, emp_id, type)

Personal Bankers (2)

Schemas:

works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)

Is this schema in BCNF?

- □ emp_id → branch_name
- cust_banker_branch isn't in BCNF
 - emp_id isn't a candidate key on cust_banker_branch
- □ cust_banker_branch repeats branch_name unnecessarily, since emp_id → branch_name
- Decompose into two BCNF schemas:
 - \square works_in already has (<u>emp_id</u>, branch_name) ($\alpha \cup \beta$)
 - Create cust_banker(cust_id, emp_id, type)

Personal Bankers (3)

New BCNF schemas:

works_in(emp_id, branch_name)

cust_banker(cust_id, emp_id, type)

A customer can have one personal banker at each branch, so both cust_id and emp_id must be in the primary key

□ Any problems with this new BCNF version?

- Now we can't <u>easily</u> constrain that each customer has only one personal banker at each branch!
- Could still create a complicated CHECK constraint involving multiple tables...

Preserving Dependencies

- The BCNF decomposition doesn't preserve this dependency:
 - □ cust_id, branch_name → emp_id
 - Can't enforce this dependency within a single table
- In general, BCNF decompositions are not <u>dependency-preserving</u>
 - Some functional dependencies are not enforceable within a single table
 - Can't enforce them with a simple key constraint, so they are more expensive
- Solution: Third Normal Form

Third Normal Form

- Slightly weaker than Boyce-Codd normal form
 - Preserves more functional dependencies
 - Also allows more repeated information!

□ Given:

- Relation schema R
- Set of functional dependencies F
- \square *R* is in 3NF with respect to *F* if:
 - For all functional dependencies $\alpha \rightarrow \beta$ in F^+ , where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:
 - $\alpha \rightarrow \beta$ is a trivial dependency
 - α is a superkey for R
 - Each attribute A in $\beta \alpha$ is contained in a candidate key for R

Third Normal Form (2)

- New condition:
 - **Each** attribute A in $\beta \alpha$ is contained in a candidate key for R
- □ A general constraint:
 - Doesn't require a single candidate key to contain all attributes in $\beta \alpha$
 - Just requires that each attribute in $\beta \alpha$ appears in some candidate key in R
 - ...possibly even different candidate keys!

Personal Banker Example

- Our non-BCNF personal banker schemas again:
 - works_in(emp_id, branch_name)
 - cust_banker_branch(cust_id, branch_name, emp_id, type)
- Is this schema in 3NF?
 - \square emp_id \rightarrow branch_name
 - □ cust_id, branch_name → emp_id
- works_in is in 3NF (emp_id is the primary key)
- What about cust_banker_branch ?
 - Both dependencies hold on cust_banker_branch
 - \blacksquare emp_id \rightarrow branch_name, but emp_id isn't the primary key
 - \blacksquare cust_id, branch_name \rightarrow emp_id ; is emp_id part of any candidate key on cust_banker_branch ?

Personal Banker Example (2)

27

Look carefully at the functional dependencies:

- Primary key of cust_banker_branch is (cust_id, branch_name)
 - { cust_id, branch_name } → cust_banker_branch (all attributes) (constraint arises from the E-R diagram & schema translation)
 - (Also specified this constraint: cust_id, branch_name → emp_id)
- \square We also know that $emp_id \rightarrow branch_name$
- Pseudotransitivity rule: if $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$
 - $\blacksquare \{ emp_id \} \rightarrow \{ branch_name \}$
 - { cust_id, branch_name } → cust_banker_branch
 - Therefore, { emp_id, cust_id } → cust_banker_branch also holds!
- (cust_id, emp_id) is a candidate key of cust_banker_branch
- So cust_banker_branch is in fact in 3NF
 - (And we need to enforce this second candidate key too...)

Canonical Cover

- Given a relation schema, and a set of functional dependencies F
- Database needs to enforce F on all relations
 Invalid changes should be rolled back
- \square F could contain a lot of functional dependencies
 - Dependencies might even logically imply each other
- Want a minimal version of F, that still represents all constraints imposed by F
 - Should be more efficient to enforce minimal version

Canonical Cover (2)

- 29
- □ A canonical cover F_c for F is a set of functional dependencies such that:
 - **\Box** F logically implies all dependencies in F_c
 - \square F_c logically implies all dependencies in F
 - Can't infer any functional dependency in F_c from other dependencies in F_c
 - No functional dependency in F_c contains an extraneous attribute
 - **\square** Left side of all functional dependencies in F_c are unique
 - There are no two dependencies $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ in F_c such that $\alpha_1 = \alpha_2$

Extraneous Attributes

30

- □ Given a set of functional dependencies F
 - An attribute in a functional dependency is <u>extraneous</u> if it can be removed from F without affecting closure of F
- \Box Formally: given *F*, and $\alpha \rightarrow \beta$
 - □ If $A \in \alpha$, and F logically implies ($F - \{\alpha \rightarrow \beta\}$) $\cup \{(\alpha - A) \rightarrow \beta\}$, then A is extraneous
 - □ If $A \in \beta$, and $(F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\}$ logically implies *F*, then *A* is extraneous
 - i.e. generate a new set of functional dependencies F' by replacing $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta A)$
 - See if F' logically implies F

Testing Extraneous Attributes

- Given relation schema R, and a set F of functional dependencies that hold on R
- \Box Attribute A in $\alpha \rightarrow \beta$
- □ If $A \in \alpha$ (i.e. A is on left side of the dependency), then let $\gamma = \alpha - \{A\}$
 - See if $\gamma \rightarrow \beta$ can be inferred from *F*
 - **Compute** γ^+ under *F*
 - If $\beta \subseteq \gamma^+$, then A is extraneous in α

Testing Extraneous Attributes (2)

- Given relation schema R, and a set F of functional dependencies that hold on R
- \Box Attribute A in $\alpha \rightarrow \beta$
- □ If $A \in \beta$ (on right side of the dependency), then try the <u>altered</u> set F'

$$\square F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$$

- See if $\alpha \to A$ can be inferred from F'
- Compute α^+ under F'
- \blacksquare If α^+ includes A, then A is extraneous in β

Computing Canonical Cover

A simple way to compute the canonical cover of F

 $F_{\rm c} = F$

repeat

apply union rule to replace dependencies in F_c of form $\alpha_1 \rightarrow \beta_1$ and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$ find a functional dependency $\alpha \rightarrow \beta$ in F_c with an extraneous attribute /* Use F_c for the extraneous attribute test, not F !!! */ if an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until F_c stops changing

Canonical Cover Example

- □ Functional dependencies F on schema (A, B, C) □ $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$
 - **I** Find F_c
- □ Apply union rule to $A \rightarrow BC$ and $A \rightarrow B$ □ Left with: { $A \rightarrow BC, B \rightarrow C, AB \rightarrow C$ }
- \Box A is extraneous in AB \rightarrow C
 - $\square B \rightarrow C \text{ is logically implied by } F \text{ (obvious)}$
 - $\square \text{ Left with: } \{ A \rightarrow BC, B \rightarrow C \}$
- \Box C is extraneous in A \rightarrow BC
 - **D** Logically implied by $A \rightarrow B, B \rightarrow C$
- $\Box F_{c} = \{ A \rightarrow B, B \rightarrow C \}$

Another Example

 \Box Functional dependencies F on schema (A, B, C, D)

$$\square F = \{ A \rightarrow B, BC \rightarrow D, AC \rightarrow D \}$$

I Find F_c

- □ In this case, it may look like $F_c = F...$
- □ However, can infer AC → D from A → B, BC → D (pseudotransitivity), so AC → D is extraneous in F
 □ Therefore, F_c = { A → B, BC → D }
- \Box Alternately, can argue that D is extraneous in AC \rightarrow D
 - With $F' = \{A \rightarrow B, BC \rightarrow D\}$, we see that $\{AC\}^+ = ACD$, so D is extraneous in $AC \rightarrow D$
 - (If you eliminate the entire RHS of a functional dependency, it goes away)

Canonical Covers

- A set of functional dependencies can have multiple canonical covers!
- Example:

$$\square F = \{ A \rightarrow BC, B \rightarrow AC, C \rightarrow AB \}$$

Has several canonical covers:

■
$$F_c = \{ A \rightarrow B, B \rightarrow C, C \rightarrow A \}$$

■ $F_c = \{ A \rightarrow B, B \rightarrow AC, C \rightarrow B \}$
■ $F_c = \{ A \rightarrow C, C \rightarrow B, B \rightarrow A \}$
■ $F_c = \{ A \rightarrow C, B \rightarrow C, C \rightarrow AB \}$
■ $F_c = \{ A \rightarrow BC, B \rightarrow A, C \rightarrow A \}$