FUNCTIONAL
DEPENDENCY THEORY



Last Lecture

Normal forms specify “good schema” patterns

First normal form (1NF):
All attributes must be atomic

Easy in relational model, harder/less desirable in SQL

Boyce-Codd normal form (BCNF):

Eliminates redundancy using functional dependencies
Given a relation schema R and a set of dependencies F

For all functional dependencies oo — P in F*, where
o U 3 C R, at least one of these conditions must hold:
o — B is a trivial dependency
a is a superkey for R



Last Lecture (2)

Can convert a schema into BCNF
If R is a schema not in BCNF:

There is at least one nontrivial functional dependency
o — B € F* such that o is not a superkey for R

Replace R with two schemas:

(o U P)

(R—(B—a))

May need to repeat this decomposition process until
all schemas are in BCNF



Functional Dependency Theory

Important to be able to reason about functional
dependencies!

Main question:

What functional dependencies are logically implied by o
set F of functional dependencies?

Other useful questions:

Which attributes are functionally determined by a
particular attribute-set?

What minimal set of functional dependencies must actually
be enforced in a database?

Is a particular schema decomposition lossless?
Does a decomposition preserve dependencies?



Rules of Inference

Given a set F of functional dependencies

Actual dependencies listed in F may be insufficient for
normalizing a schema

Must consider all dependencies logically implied by F

For a relation schema R

A functional dependency f on R is logically implied by F on
R if every relation instance r(R) that satisfies F also satisfies f

Example:
Relation schema R(A, B, C, G, H, I)

Dependencies:
A—>B A—>C,CG—->HCGC—>I,B—>H

Logically implies: A — H, CG — HI, AG — |



Rules of Inference (2)

Axioms are rules of inference for dependencies
This group is called Armstrong’s axioms

Greek letters a, 3, 7, ... represent attribute sets
Reflexivity rule:
If o is a set of attributes and 3 < a, then a — 3 holds.

Augmentation rule:

If o — [ holds, and y is a set of attributes, then yoo — 73
holds.

Transitivity rule:
If oo = B holds, and B — ¥ holds, then a — 7 holds.



Computing Closure of F

Can use Armstrong’s axioms to compute F™ from F
F is a set of functional dependencies

Ff=F
repeat
for each functional dependency fin F*
apply reflexivity and augmentation rules to f
add resulting functional dependencies to F*
for each pair of functional dependencies f, , f, in F'
if f; and f, can be combined using transitivity
add resulting functional dependency to F*
until F* stops changing



Armstrong’s Axioms

Axioms are sound

They don’t generate any incorrect functional dependencies

Axioms are complete

Given a set of functional dependencies F, repeated
application generates all F*

F™ could be very large
LHS and RHS of a dependency are subsets of R
A set of size n has 2" subsets

2" x 2" = 227 possible functional dependencies in R !



More Rules of Inference

Additional rules can be proven from Armstrong’s
axioms

These make it easier to generate F*
Union rule:
If oo — 3 holds, and oo — v holds, then oo — 3y holds.
Decomposition rule:
If o — Py holds, then @ — 3 holds and a0 — 7 holds.
Pseudotransitivity rule:
If oo = B holds, and Y3 — 0 holds, then ary — 0 holds.



Attribute-Set Closure

How to tell if an attribute-set o is a superkey?
If oo — R then o is a superkey.

What attributes are functionally determined by an
attribute-set o ¢

Given:
Attribute-set o
Set of functional dependencies F

The set of all attributes functionally determined by o under
F is called the closure of o under F

Written as ot



Attribute-Set Closure (2)

It’s easy to compute the closure of attribute-set o |
Algorithm is very simple
Inputs:

attribute-set o
set of functional dependencies F

oaf =
repeat
for each functional dependency 3 — yin F
if coafthena™=a" Uy
until o™ stops changing



Attribute-Set Closure (3)

Can easily test if o is a superkey
Compute o
If R o then L is a superkey of R

Can also use to identify functional dependencies
o —> B holds if p < af
Find closure of o under F; if it contains 3 then oo — 3 holds!
Can compute F™ with attribute-set closure too:

For each y < R, find closure Y™ under F
We know that y — y*

For each subset S < y*, add functional dependency y — S



Attribute-Set Closure Example

Relation schema R(A, B, C, G, H, )

Dependencies:
A—>B A—>C,CG—->HCGC—>I,B>H

Is AG a superkey of R ¢
Compute (AG)*
Start with o™ = AG

A — B, A —> C cause o™ = ABCG
CG —> H, CG — | cause o." = ABCGHI

AG is a superkey of R!



Attribute-Set Closure Example (2)

Relation schema R(A, B, C, G, H, |

Dependencies:
A—>B A—>C,CG—->HCGC—>I,B—>H

Is AG a candidate key of R 2

A candidate key is a minimal superkey

Compute attribute-set closure of all proper subsets of
superkey; if we get R then it’s not a candidate key

Compute the attribute-set closures under F
A" = ABCH
G"=G

AG is indeed a candidate key!



BCNF Revisited

BCNF algorithm states, if R. is a schema not in BCNF:

There is at least one nontrivial functional dependency
o —> [3 such that o is not a superkey for R,

Two points:
o —> 3 € F', not just in F
For R, only care about func. deps. where o U 3 € R,

How do we tell if R. is not in BCNF?

Can use attribute-set closure under F to find if there is a
dependency in F* that affects R,

For each proper subset oo — R, , compute o™ under F

If o™ doesn’t contain R, , but o does contain any attributes
in R, — a, then R, is not in BCNF



BCNF Revisited (2)

If o™ doesn’t contain R;, but o™ does contain any
attributes in R. — o, then R; is not in BCNF

If o™ doesn’t contain R, what do we know about a with
respect to R; ¢

o is not a superkey of R,
If o™ contains attributes in R. — o :

We know there is some non-trivial functional dependency
o —> [3 that holds on R,

Since a0 — [3 holds on R;, but o is not a candidate key
of R., we know that R, cannot be in BCNF.



BCNF Example

Start with schema R(A, B, C, D, E), and
F={A—>B,BC—>D}

Is R in BCNF?

Obviously not.
Using A — B, decompose into R, (A, B) and R,(A, C, D, E)

Are we done?
Pseudotransitivity rule says that if a — 3 and y3 — 9, then
oy — 0
AC — D also holds on R, so R, is not in BCNF!
Or, compute {AC}* = ABCD. Again, R, is not in BCNF.



Database Constraints

Enforcing database constraints can easily become
very expensive

Especially CHECK constraints!

Best to define database schema such that constraint
enforcement is efficient

ldeally, enforcing a functional dependency involves
only one relation

Then, can specify a key constraint instead of a multi-
table CHECK constraint!



Example: Personal Bankers

Bank sets a requirement on employees:
Each employee can work at only one branch
emp_id — branch_name

Bank wants to give customers a personal banker at
each branch

At each branch, a customer has only one personal
banker

(A customer could have personal bankers at multiple
branches.)

cust_id, branch_name — emp_id



Personal Bankers

E-R diqgram: employee
works_in emp_id
emp_name
branch ;
branch name bcuif_ cu;s Zner
branch_cit e cust 1a
assets 4 W cust_name
type

Relationship-set schemas:
works_in(emp_id, branch_name)

cust_banker_branch(cust_id, branch_name, emp_id, type)




Personal Bankers (2)

Schemas:

works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)

Is this schema in BCNF?

emp_id — branch_name

cust_banker branch isn’t in BCNF
emp_id isn’t a candidate key on cust_banker_branch

cust_banker_branch repeats branch_name unnecessarily,
since emp_id — branch_name

Decompose into two BCNF schemas:
works_in already has (emp_id, branch_name) (o U )
Create cust_banker(cust_id, emp_id, type) (R— (P —a))



Personal Bankers (3)

New BCNF schemas:

works_in(emp _id, branch_name)

cust_banker(cust id, emp id, type)
A customer can have one personal banker at each branch,
so both cust_id and emp_id must be in the primary key

Any problems with this new BCNF version?
Now we can’t easily constrain that each customer has only
one personal banker at each branch!
Could still create a complicated CHECK constraint involving
multiple tables...




Preserving Dependencies

The BCNF decomposition doesn’t preserve this
dependency:

cust_id, branch_name — emp_id

Can’t enforce this dependency within a single table

In general, BCNF decompositions are not
dependency-preserving

Some functional dependencies are not enforceable within a
single table

Can’t enforce them with a simple key constraint, so they are
more expensive

Solution: Third Normal Form



Third Normal Form

Slightly weaker than Boyce-Codd normal form
Preserves more functional dependencies
Also allows more repeated information!

Given:
Relation schema R
Set of functional dependencies F

R is in 3NF with respect to F if:

For all functional dependencies oo — P in F*, where

o Z R and 3 < R, at least one of the following holds:
o — B is a trivial dependency
a is a superkey for R
Each attribute A in 3 — a is contained in a candidate key for R



Third Normal Form (2)

New condition:

Each attribute A in 3 — o is contained in a candidate

key for R

A general constraint:

Doesn’t require a single candidate key to contain all
attributes in 3 — o

Just requires that each attribute in 3 — o appears in
some candidate key in R

...possibly even different candidate keys!



Personal Banker Example

Our non-BCNF personal banker schemas again:
works_in(emp_id, branch_name)
cust_banker_branch(cust _id, branch _name, emp_id, type)

Is this schema in 3NF?
emp_id — branch_name

cust_id, branch_name — emp_id
works_in is in 3NF (emp_id is the primary key)
What about cust banker branch ¢

Both dependencies hold on cust_banker_branch
emp_id — branch_name, but emp_id isn’t the primary key

cust_id, branch_name — emp_id ; is emp_id part of any
candidate key on cust_banker_branch 2



Personal Banker Example (2)

Look carefully at the functional dependencies:

Primary key of cust_banker_branch is (cust_id, branch_name)

{ cust_id, branch_name } — cust_banker_branch (all attributes)
(constraint arises from the E-R diagram & schema translation)

(Also specified this constraint: cust_id, branch_name — emp_id)
We also know that emp_id — branch_name
Pseudotransitivity rule: if o = B and Y3 — 0, then ay — 0

{ emp_id } — { branch_name }

{ cust_id, branch_name } — cust_banker_branch

Therefore, { emp_id, cust_id } — cust_banker_branch also holds!

(cust_id, emp_id) is a candidate key of cust_banker_branch

So cust _banker branch is in fact in 3NF
(And we need to enforce this second candidate key too...)



Canonical Cover

Given a relation schema, and a set of functional
dependencies F

Database needs to enforce F on all relations

Invalid changes should be rolled back
F could contain a lot of functional dependencies
Dependencies might even logically imply each other

Want a minimal version of F, that still represents all
constraints imposed by F

Should be more efficient to enforce minimal version



Canonical Cover (2)

A canonical cover F_ for F is a set of functional
dependencies such that:

F logically implies all dependencies in F.
F. logically implies all dependencies in F

Can’t infer any functional dependency in F_ from other
dependencies in F_

No functional dependency in F_ contains an extraneous
attribute

Left side of all functional dependencies in F_ are unique

There are no two dependencies o,; — 3; and o, — 3, in F,
such that o, = a.,



Extraneous Attributes

Given a set of functional dependencies F

An attribute in a functional dependency is extraneous if
it can be removed from F without affecting closure of F

Formally: given F, and o — [

If A € a, and F logically implies
(F = {o = B}) U {(ao = A) = B}, then A is extraneous

If A e, and (F={a — B}) U {a — (B - A)} logically
implies F, then A is extraneous

i.e. generate a new set of functional dependencies F' by
replacing a — B with o — ([ — A)
See if F'logically implies F



Testing Extraneous Attributes

Given relation schema R, and a set F of functional
dependencies that hold on R

Attribute Ain o — [
If A € a(i.e. Ais on left side of the dependency),
then let y = o — {A}

See if Yy = B can be inferred from F

Compute Y* under F

If B € vy, then A is extraneous in o



Testing Extraneous Attributes (2)

Given relation schema R, and a set F of functional
dependencies that hold on R

Attribute A in o0 — 3

If A € 3 (on right side of the dependency), then try
the altered set F'

F'=(F—{a— B} U{a—>(p-A)

See if & — A can be inferred from F’

Compute ot under F'

If o includes A, then A is extraneous in [3



Computing Canonical Cover

A simple way to compute the canonical cover of F

F.=F
repeat
apply union rule to replace dependencies in F_ of form
o, = B, and a, = B, with a; = BB,
find a functional dependency a — 3 in F_ with an
extraneous attribute
/* Use F_for the extraneous attribute test, not F Il */

if an extraneous attribute is found, delete it from oo — [3
until F_ stops changing



Canonical Cover Example

Functional dependencies F on schema (A, B, C)
F={A—>BC,B—>C,A—> B, AB—>C}
Find F_

Apply union ruleto A— BC and A —> B
Left with: { A— BC,B—> C, AB—> C}

A is extraneous in AB > C
B — C is logically implied by F (obvious)
Left with. {A —> BC,B —> C}

C is extraneous in A — BC
Logically implied by A—> B, B —> C

F.={A—>B,B—>C}



Another Example

Functional dependencies F on schema (A, B, C, D)
F={A—>B,BC—>D,AC—>D}
Find F_

In this case, it may look like F_ = F...

However, can infer AC —> D from A —> B, BC —> D

(pseudotransitivity), so AC — D is extraneous in F
Therefore, F, ={ A — B, BC —> D }

Alternately, can argue that D is extraneous in AC — D

With F'={ A — B, BC — D }, we see that {AC}* = ACD,
so D is extraneous in AC —> D

(If you eliminate the entire RHS of a functional dependency,
it goes away)



Canonical Covers

A set of functional dependencies can have multiple
canonical covers!

Example:
F={A—>BC,B—> AC,C —> AB}
Has several canonical covers:

F.={A—>BB—>CC— A}
F.={A—>B,B—> AC,C > B}
F.={A—>C,C—>BB—>A}
F.={A—>C,B—>C,C— AB}
F.={A—>BC,B—>AC—> A}



