
FUNCTIONAL
DEPENDENCY THEORY
CS121: Relational Databases
Fall 2018 – Lecture 19

Last Lecture

¨ Normal forms specify “good schema” patterns
¨ First normal form (1NF):

¤ All attributes must be atomic
¤ Easy in relational model, harder/less desirable in SQL

¨ Boyce-Codd normal form (BCNF):
¤ Eliminates redundancy using functional dependencies
¤ Given a relation schema R and a set of dependencies F
¤ For all functional dependencies a ® b in F+, where
a ∪ b Í R, at least one of these conditions must hold:
n a ® b is a trivial dependency
n a is a superkey for R

2

Last Lecture (2)

¨ Can convert a schema into BCNF
¨ If R is a schema not in BCNF:

¤ There is at least one nontrivial functional dependency
a ® b Î F+ such that a is not a superkey for R

¨ Replace R with two schemas:
(a ∪ b)
(R – (b – a))

¨ May need to repeat this decomposition process until
all schemas are in BCNF

3

Functional Dependency Theory

¨ Important to be able to reason about functional
dependencies!

¨ Main question:
¤ What functional dependencies are logically implied by a

set F of functional dependencies?
¨ Other useful questions:

¤ Which attributes are functionally determined by a
particular attribute-set?

¤ What minimal set of functional dependencies must actually
be enforced in a database?

¤ Is a particular schema decomposition lossless?
¤ Does a decomposition preserve dependencies?

4

Rules of Inference

¨ Given a set F of functional dependencies
¤ Actual dependencies listed in F may be insufficient for

normalizing a schema
¤ Must consider all dependencies logically implied by F

¨ For a relation schema R
¤ A functional dependency f on R is logically implied by F on
R if every relation instance r(R) that satisfies F also satisfies f

¨ Example:
¤ Relation schema R(A, B, C, G, H, I)
¤ Dependencies:
A® B, A® C, CG® H, CG® I, B® H

¤ Logically implies: A® H, CG® HI, AG® I

5

Rules of Inference (2)

¨ Axioms are rules of inference for dependencies
¨ This group is called Armstrong’s axioms
¨ Greek letters a, b, g, … represent attribute sets
¨ Reflexivity rule:

If a is a set of attributes and b Í a, then a ® b holds.

¨ Augmentation rule:
If a ® b holds, and g is a set of attributes, then ga ® gb

holds.

¨ Transitivity rule:
If a ® b holds, and b ® g holds, then a ® g holds.

6

Computing Closure of F

Can use Armstrong’s axioms to compute F+ from F
¨ F is a set of functional dependencies

F+ = F
repeat

for each functional dependency f in F+
apply reflexivity and augmentation rules to f
add resulting functional dependencies to F+

for each pair of functional dependencies f1 , f2 in F+
if f1 and f2 can be combined using transitivity

add resulting functional dependency to F+
until F+ stops changing

7

Armstrong’s Axioms

¨ Axioms are sound
¤ They don’t generate any incorrect functional dependencies

¨ Axioms are complete
¤ Given a set of functional dependencies F, repeated

application generates all F+

¨ F+ could be very large
¤ LHS and RHS of a dependency are subsets of R
¤ A set of size n has 2n subsets
¤ 2n ´ 2n = 22n possible functional dependencies in R !

8

More Rules of Inference

¨ Additional rules can be proven from Armstrong’s
axioms
¤ These make it easier to generate F+

¨ Union rule:
If a ® b holds, and a ® g holds, then a ® bg holds.

¨ Decomposition rule:
If a ® bg holds, then a ® b holds and a ® g holds.

¨ Pseudotransitivity rule:
If a ® b holds, and gb ® d holds, then ag ® d holds.

9

Attribute-Set Closure

¨ How to tell if an attribute-set a is a superkey?
¤ If a ® R then a is a superkey.
¤ What attributes are functionally determined by an

attribute-set a ?

¨ Given:
¤ Attribute-set a
¤ Set of functional dependencies F
¤ The set of all attributes functionally determined by a under
F is called the closure of a under F

¤ Written as a+

10

Attribute-Set Closure (2)

¨ It’s easy to compute the closure of attribute-set a !
¤ Algorithm is very simple

¨ Inputs:
¤ attribute-set a
¤ set of functional dependencies F

a+ = a
repeat

for each functional dependency b ® g in F
if b Í a+ then a+ = a+ ∪ g

until a+ stops changing

11

Attribute-Set Closure (3)

¨ Can easily test if a is a superkey
¤ Compute a+

¤ If R Í a+ then a is a superkey of R
¨ Can also use to identify functional dependencies

¤ a ® b holds if b Í a+

n Find closure of a under F; if it contains b then a ® b holds!
¤ Can compute F+ with attribute-set closure too:

n For each g Í R, find closure g+ under F
n We know that g ® g+

n For each subset S Í g+, add functional dependency g ® S

12

Attribute-Set Closure Example

¨ Relation schema R(A, B, C, G, H, I)
¤ Dependencies:
A® B, A® C, CG® H, CG® I, B® H

¨ Is AG a superkey of R ?
¨ Compute (AG)+

¤ Start with a+ = AG
¤ A ® B, A® C cause a+ = ABCG
¤ CG® H, CG® I cause a+ = ABCGHI

¨ AG is a superkey of R !

13

Attribute-Set Closure Example (2)

¨ Relation schema R(A, B, C, G, H, I)
¤ Dependencies:
A® B, A® C, CG® H, CG® I, B® H

¨ Is AG a candidate key of R ?
¤ A candidate key is a minimal superkey
¤ Compute attribute-set closure of all proper subsets of

superkey; if we get R then it’s not a candidate key
¨ Compute the attribute-set closures under F

¤ A+ = ABCH
¤ G+ = G

¨ AG is indeed a candidate key!

14

BCNF Revisited

¨ BCNF algorithm states, if Ri is a schema not in BCNF:
¤ There is at least one nontrivial functional dependency
a ® b such that a is not a superkey for Ri

¨ Two points:
¤ a ® b Î F+, not just in F
¤ For Ri, only care about func. deps. where a ∪ b Î Ri

¨ How do we tell if Ri is not in BCNF?
¤ Can use attribute-set closure under F to find if there is a

dependency in F+ that affects Ri
¤ For each proper subset a Ì Ri , compute a+ under F
¤ If a+ doesn’t contain Ri , but a+ does contain any attributes

in Ri – a, then Ri is not in BCNF

15

BCNF Revisited (2)

¨ If a+ doesn’t contain Ri , but a+ does contain any
attributes in Ri – a, then Ri is not in BCNF

¨ If a+ doesn’t contain Ri , what do we know about a with
respect to Ri ?
¤ a is not a superkey of Ri

¨ If a+ contains attributes in Ri – a :
¤ Let b = Ri Ç (a+ – a)
¤ We know there is some non-trivial functional dependency
a ® b that holds on Ri

¨ Since a ® b holds on Ri , but a is not a candidate key
of Ri , we know that Ri cannot be in BCNF.

16

BCNF Example

¨ Start with schema R(A, B, C, D, E), and
F = { A® B, BC® D }

¨ Is R in BCNF?
¤ Obviously not.
¤ Using A® B, decompose into R1(A, B) and R2(A, C, D, E)

¨ Are we done?
¤ Pseudotransitivity rule says that if a ® b and gb ® d, then
ag ® d

¤ AC® D also holds on R2, so R2 is not in BCNF!
¤ Or, compute {AC}+ = ABCD. Again, R2 is not in BCNF.

17

Database Constraints

¨ Enforcing database constraints can easily become
very expensive
¤ Especially CHECK constraints!

¨ Best to define database schema such that constraint
enforcement is efficient

¨ Ideally, enforcing a functional dependency involves
only one relation
¤ Then, can specify a key constraint instead of a multi-

table CHECK constraint!

18

Example: Personal Bankers

¨ Bank sets a requirement on employees:
¤ Each employee can work at only one branch
¤ emp_id® branch_name

¨ Bank wants to give customers a personal banker at
each branch
¤ At each branch, a customer has only one personal

banker
¤ (A customer could have personal bankers at multiple

branches.)
¤ cust_id, branch_name® emp_id

19

Personal Bankers

¨ E-R diagram:

¨ Relationship-set schemas:
works_in(emp_id, branch_name)

cust_banker_branch(cust_id, branch_name, emp_id, type)

works_in

cust_
banker_
branch

branch
branch_name
branch_city
assets

employee
emp_id
emp_name

customer
cust_id
cust_name

type

20

Personal Bankers (2)

¨ Schemas:
works_in(emp_id, branch_name)
cust_banker_branch(cust_id, branch_name, emp_id, type)

¨ Is this schema in BCNF?
¤ emp_id ® branch_name
¤ cust_banker_branch isn’t in BCNF

n emp_id isn’t a candidate key on cust_banker_branch
¤ cust_banker_branch repeats branch_name unnecessarily,

since emp_id ® branch_name
¨ Decompose into two BCNF schemas:

¤ works_in already has (emp_id, branch_name) (a ∪ b)
¤ Create cust_banker(cust_id, emp_id, type) (R – (b – a))

21

Personal Bankers (3)

¨ New BCNF schemas:
works_in(emp_id, branch_name)
cust_banker(cust_id, emp_id, type)
¤ A customer can have one personal banker at each branch,

so both cust_id and emp_id must be in the primary key

¨ Any problems with this new BCNF version?
¤ Now we can’t easily constrain that each customer has only

one personal banker at each branch!
¤ Could still create a complicated CHECK constraint involving

multiple tables…

22

Preserving Dependencies

¨ The BCNF decomposition doesn’t preserve this
dependency:
¤ cust_id, branch_name® emp_id
¤ Can’t enforce this dependency within a single table

¨ In general, BCNF decompositions are not
dependency-preserving
¤ Some functional dependencies are not enforceable within a

single table
¤ Can’t enforce them with a simple key constraint, so they are

more expensive

¨ Solution: Third Normal Form

23

Third Normal Form

¨ Slightly weaker than Boyce-Codd normal form
¤ Preserves more functional dependencies
¤ Also allows more repeated information!

¨ Given:
¤ Relation schema R
¤ Set of functional dependencies F

¨ R is in 3NF with respect to F if:
¤ For all functional dependencies a ® b in F+, where
a Í R and b Í R, at least one of the following holds:
n a ® b is a trivial dependency
n a is a superkey for R
n Each attribute A in b – a is contained in a candidate key for R

24

Third Normal Form (2)

¨ New condition:
¤ Each attribute A in b – a is contained in a candidate

key for R

¨ A general constraint:
¤ Doesn’t require a single candidate key to contain all

attributes in b – a
¤ Just requires that each attribute in b – a appears in
some candidate key in R

¤ …possibly even different candidate keys!

25

Personal Banker Example

¨ Our non-BCNF personal banker schemas again:
¤ works_in(emp_id, branch_name)
¤ cust_banker_branch(cust_id, branch_name, emp_id, type)

¨ Is this schema in 3NF?
¤ emp_id® branch_name
¤ cust_id, branch_name® emp_id

¨ works_in is in 3NF (emp_id is the primary key)
¨ What about cust_banker_branch ?

¤ Both dependencies hold on cust_banker_branch
n emp_id® branch_name, but emp_id isn’t the primary key
n cust_id, branch_name® emp_id ; is emp_id part of any

candidate key on cust_banker_branch ?

26

Personal Banker Example (2)

¨ Look carefully at the functional dependencies:
¤ Primary key of cust_banker_branch is (cust_id, branch_name)

n { cust_id, branch_name } ® cust_banker_branch (all attributes)
(constraint arises from the E-R diagram & schema translation)

n (Also specified this constraint: cust_id, branch_name ® emp_id)
¤ We also know that emp_id ® branch_name
¤ Pseudotransitivity rule: if a ® b and gb ® d, then ag ® d

n { emp_id } ® { branch_name }
n { cust_id, branch_name } ® cust_banker_branch
n Therefore, { emp_id, cust_id } ® cust_banker_branch also holds!

¤ (cust_id, emp_id) is a candidate key of cust_banker_branch
¨ So cust_banker_branch is in fact in 3NF

¤ (And we need to enforce this second candidate key too…)

27

Canonical Cover

¨ Given a relation schema, and a set of functional
dependencies F

¨ Database needs to enforce F on all relations
¤ Invalid changes should be rolled back

¨ F could contain a lot of functional dependencies
¤ Dependencies might even logically imply each other

¨ Want a minimal version of F, that still represents all
constraints imposed by F
¤ Should be more efficient to enforce minimal version

28

Canonical Cover (2)

¨ A canonical cover Fc for F is a set of functional
dependencies such that:
¤ F logically implies all dependencies in Fc
¤ Fc logically implies all dependencies in F
¤ Can’t infer any functional dependency in Fc from other

dependencies in Fc
¤ No functional dependency in Fc contains an extraneous

attribute
¤ Left side of all functional dependencies in Fc are unique

n There are no two dependencies a1 ® b1 and a2 ® b2 in Fc
such that a1 = a2

29

Extraneous Attributes

¨ Given a set of functional dependencies F
¤ An attribute in a functional dependency is extraneous if

it can be removed from F without affecting closure of F
¨ Formally: given F, and a ® b

¤ If A Î a, and F logically implies
(F – {a ® b}) ∪ {(a – A) ® b}, then A is extraneous

¤ If A Î b, and (F – {a ® b}) ∪ {a ® (b – A)} logically
implies F, then A is extraneous
n i.e. generate a new set of functional dependencies F' by

replacing a ® b with a ® (b – A)
n See if F' logically implies F

30

Testing Extraneous Attributes

¨ Given relation schema R, and a set F of functional
dependencies that hold on R

¨ Attribute A in a ® b
¨ If A Î a (i.e. A is on left side of the dependency),

then let g = a – {A}
¤ See if g ® b can be inferred from F
¤ Compute g+ under F
¤ If b ⊆ g+, then A is extraneous in a

31

Testing Extraneous Attributes (2)

¨ Given relation schema R, and a set F of functional
dependencies that hold on R

¨ Attribute A in a ® b
¨ If A Î b (on right side of the dependency), then try

the altered set F'
¤ F' = (F – {a ® b}) ∪ {a ® (b – A)}
¤ See if a ® A can be inferred from F'
¤ Compute a+ under F'
¤ If a+ includes A, then A is extraneous in b

32

Computing Canonical Cover

¨ A simple way to compute the canonical cover of F

Fc = F
repeat

apply union rule to replace dependencies in Fc of form
a1 ® b1 and a1 ® b2 with a1 ® b1b2

find a functional dependency a ® b in Fc with an
extraneous attribute

/* Use Fc for the extraneous attribute test, not F !!! */
if an extraneous attribute is found, delete it from a ® b

until Fc stops changing

33

Canonical Cover Example

¨ Functional dependencies F on schema (A, B, C)
¤ F = { A® BC, B® C, A® B, AB® C }
¤ Find Fc

¨ Apply union rule to A® BC and A® B
¤ Left with: { A® BC, B® C, AB® C }

¨ A is extraneous in AB® C
¤ B® C is logically implied by F (obvious)
¤ Left with: { A® BC, B® C }

¨ C is extraneous in A® BC
¤ Logically implied by A® B, B® C

¨ Fc = { A® B, B® C }

34

Another Example

¨ Functional dependencies F on schema (A, B, C, D)
¤ F = { A® B, BC® D, AC® D }
¤ Find Fc

¨ In this case, it may look like Fc = F…
¨ However, can infer AC® D from A® B, BC® D

(pseudotransitivity), so AC® D is extraneous in F
¤ Therefore, Fc = { A® B, BC® D }

¨ Alternately, can argue that D is extraneous in AC® D
¤ With F' = { A® B, BC® D }, we see that {AC}+ = ACD,

so D is extraneous in AC® D
¤ (If you eliminate the entire RHS of a functional dependency,

it goes away)

Canonical Covers

¨ A set of functional dependencies can have multiple
canonical covers!

¨ Example:
¤ F = { A® BC, B® AC, C® AB }
¤ Has several canonical covers:

n Fc = { A® B, B® C, C® A }
n Fc = { A® B, B® AC, C® B }
n Fc = { A® C, C® B, B® A }
n Fc = { A® C, B® C, C® AB }
n Fc = { A® BC, B® A, C® A }

36

