
NORMAL FORMS
CS121: Relational Databases
Fall 2018 – Lecture 18

Equivalent Schemas

¨ Many different schemas can represent a set of data
¤ Which one is best?
¤ What does “best” even mean?

¨ Main goals:
¤ Representation must be complete
¤ Data should not be unnecessarily redundant
¤ Should be easy to manipulate the information
¤ Should be easy to enforce [most] constraints

2

Normal Forms

¨ A “good” pattern for database schemas to follow is
called a normal form

¨ Several different normal forms, with different
constraints

¨ Normal forms can be formally specified
¤ Can test a schema against a normal form
¤ Can transform a schema into a normal form

¨ Goal:
¤ Design schemas that satisfy a particular normal form
¤ If a schema isn’t “good,” transform it into an appropriate

normal form

3

Example Schema Design

¨ Schema for representing loans and borrowers:
¤ customer relation stores customer details, including a cust_id

primary-key attribute
¤ loan(loan_id, amount)
¤ borrower(cust_id, loan_id)

¨ Many-to-many mapping
¤ A customer can have

multiple loans
¤ A loan can be owned

by multiple customers

loan_id amount
…
L-100
…

…
10000
…

cust_id loan_id
…
23-652
15-202
23-521
…

…
L-100
L-100
L-100
…

loan

borrower

4

Larger Schema?

¨ Could replace loan and borrower relations with a
larger, combined relation
bor_loan(cust_id, loan_id, amount)

¨ Rationale:
¤ Eliminates a join when retrieving loan amounts

¨ Problem: mapping between customers and loans is
many-to-many
¤ Multiple redundant copies of amount to keep in sync!

cust_id loan_id amount
…
23-652
15-202
23-521
…

…
L-100
L-100
L-100
…

…
10000
10000
10000
…
bor_loan

5

Repeated Values

¨ How do we know that this is a problem?
¤ “Because we see values that appear multiple times”
¤ This isn’t a good enough reason!!!
¤ Could easily have different loans with the same amount

¨ A repeated value doesn’t
automatically indicate a
problem…

cust_id loan_id amount
…
23-652
19-065
15-202
23-521
20-419
…

…
L-100
L-205
L-100
L-100
L-205
…

…
10000
10000
10000
10000
10000
…
bor_loan

6

Back to the Enterprise

¨ What are the rules of the enterprise that we are
modeling?
¤ “Every loan must have only one amount.”

¨ In other words:
¤ Every loan ID corresponds to exactly one amount.
¤ If there were a schema (loan_id, amount) then loan_id can

be a primary key.

¨ Specified as a functional dependency
¤ loan_id® amount
¤ loan_id functionally determines amount

7

Repeated Values v2.0

¨ bor_loan relation has both loan_id and amount
attributes
bor_loan(cust_id, loan_id, amount)

¨ But, loan_id® amount, and loan_id by itself can’t be
a primary key in bor_loan
¤ Need to support many-to-many mappings between

customers and loans
¤ Combination of cust_id and loan_id must be a primary key,

so a particular loan_id value can appear multiple times

¨ In rows with the same loan_id value, amount will have
to be repeated.

8

Functional Dependencies

¨ Functional dependencies are very important in schema
analysis
¤ Have a lot to do with keys!
¤ “Good” schema designs are guided by functional

dependencies
¤ Frequently helpful to identify them during schema design

¨ Can formally define functional dependencies, and
reason about them

¨ Can also specify constraints on schemas using
functional dependencies

9

Another Example Schema

¨ A “large” schema for employee information
employee(emp_id, emp_name, phone, title, salary, start_date)

¨ Employee ID is unique, but other attributes could have
duplicate values

emp_id emp_name phone title salary start_date
…
123-45-6789
314-15-9265
987-65-4321
101-01-0101
…

…
Jeff
Mary
Helen
Marcus
…

…
555-1234
555-3141
555-9876
555-1010
…

…
CTO
CFO
Developer
Tester
…

…
120000
120000
90000
70000

…
1996-03-15
1997-08-02
1996-05-23
1995-11-04
…

employee

10

Smaller Schemas?

¨ Could represent this with two smaller schemas:
emp_ids(emp_id, emp_name)
emp_details(emp_name, phone, title, salary, start_date)

¨ Generate original employee data with a join:
emp_ids emp_details

¨ Any problems with this?

emp_id emp_name
…
123-45-6789
314-15-9265
987-65-4321
101-01-0101
…

…
Jeff
Mary
Helen
Marcus
…

emp_ids emp_details

emp_name phone title salary start_date
…
Jeff
Mary
Helen
Marcus
…

…
555-1234
555-3141
555-9876
555-1010
…

…
CTO
CFO
Developer
Tester
…

…
120000
120000
90000
70000

…
1996-03-15
1997-08-02
1996-05-23
1995-11-04
…

11

emp_name is not unique!

¨ Joins using emp_name can generate invalid tuples!

emp_id emp_name
…
314-15-9265
161-80-3398
…

…
Mary
Mary
…

emp_ids emp_details

emp_name phone title salary start_date
…
Mary
Mary
…

…
555-3141
555-1618
…

…
CFO
Gofer
…

…
120000
25000

…
1997-08-02
1998-01-07
…

emp_id emp_name phone title salary start_date
…
314-15-9265
314-15-9265
161-80-3398
161-80-3398
…

…
Mary
Mary
Mary
Mary
…

…
555-1618
555-3141
555-3141
555-1618
…

…
Gofer
CFO
CFO
Gofer
…

…
25000
120000
120000
25000

…
1998-01-07
1997-08-02
1997-08-02
1998-01-07
…

emp_ids emp_details

12

Bad Decompositions

¨ This decomposition is clearly broken
¤ It can’t represent the information correctly!

¨ Problem: enterprise needs to support different
employees with the same name

¨ Lossy decompositions cannot accurately represent all
facts about an enterprise

¨ Lossless decompositions can accurately represent all
facts

¨ “Good” schema designs avoid lossy decompositions

13

First Normal Form

¨ A schema is in first normal form (1NF) if all attribute
domains are atomic
¤ An atomic domain has values that are indivisible units

¨ E-R model supports non-atomic attributes
¤ Multivalued attributes
¤ Composite attributes

¨ Relational model specifies atomic domains for
attributes
¤ Schemas are automatically in 1NF
¤ Mapping from E-R model to relational model changes

composite/multivalued attributes into an atomic form

14

1NF Example

¨ E-R diagram for magazine
subscribers
¤ address is composite
¤ email_addr is multivalued

¨ Converts to a 1NF schema:
subscriber(sub_id, street, city, state, zip_code)
sub_emails(sub_id, email_addr)
¤ The conversion rules we have discussed, automatically

convert E-R schemas into 1NF

subscriber
sub_id
{ email_addr }
address

street
city
state
zip_code

15

1NF and Non-Atomic Attributes

¨ Many, but not all, SQL DBs have non-atomic types
¤ Some offer support for composite attributes
¤ Some offer support for multivalued attributes
¤ These are SQL extensions – not portable

¨ As long as you steer clear of using non-atomic attributes
in primary/foreign keys, can sometimes be quite useful
¤ Will likely encounter them very rarely in practice, though
¤ Biggest reason: DB support for list/vector column-types isn’t

terribly widespread, or always very easy to use

16

1NF and Non-Atomic Attributes (2)

¨ Composite types:
¤ e.g. defining an “address” composite type
¤ Can definitely be useful for making a schema clearer, as

long as they aren’t used in a key!
¨ Multivalued types:

¤ e.g. arrays, lists, sets, vectors
¤ Can sometimes be useful for storing pre-computed values

that aren’t expected to change frequently
¤ If you are regularly issuing queries that search through or

change these values, you may need to revise your schema!
n Should probably factor non-atomic data out into a separate table

17

Other Normal Forms

¨ Other normal forms relate to functional
dependencies

¨ Analysis of functional dependencies shows if a
schema needs decomposed

¨ Keys are functional dependencies too!
¨ Formally define functional dependencies, and

reason about them
¨ Define normal forms in terms of functional

dependencies

18

Schemas and Constraints

¨ Keys and functional dependencies are constraints that a
database must satisfy
¤ Legal relations satisfy the required constraints
¤ Relation doesn’t contain any tuples that violate the specified

constraints
¨ More terminology:

¤ Relation schema R, relation r(R)
¤ A set of functional dependencies F
¤ Relation r satisfies F if r is legal
¤ When we say “F holds on R”, specifies the set of relations

with R as their schema, that are legal with respect to F

19

Functional Dependencies

¨ Formal definition of a functional dependency:
¤ Given a relation schema R with attribute-sets a, b Í R
¤ The functional dependency a ® b holds on r(R) if
á " t1, t2 Î r : t1[a] = t2[a] : t1[b] = t2[b] ñ

¨ In other words:
¤ For all pairs of tuples t1 and t2 in r,

if t1[a] = t2[a] then t1[b] = t2[b]
¤ a functionally determines b

20

Dependencies and Superkeys

¨ Given relation schema R, a subset K of R can be a
superkey
¤ In a relation r(R), no two tuples can share the same values

for attributes in K
¨ Can also say: K is a superkey if K® R

¤ The functional dependency K® R holds if
á " t1, t2 Î r(R) : t1[K] = t2[K] : t1[R] = t2[R] ñ

¤ t1[R] = t2[R] (or t1 = t2) means t1 and t2 are the same tuple
¤ The superkey K functionally determines the whole relation R

¨ Functional dependencies are a more general form of
constraint than superkeys are.

21

The bor_loan Relation

¨ bor_loan(cust_id, loan_id, amount)
¤ Functional dependency: loan_id ® amount
¤ “Every loan has exactly one amount.”
¤ Every tuple in bor_loan with a given loan_id value must have

the same amount value

¨ bor_loan also has a primary key
¤ Specifies another functional dependency
¤ cust_id, loan_id ® cust_id, loan_id, amount
¤ This is not a functional dependency specifically required by

what the enterprise needs to model
n Can be inferred from other functional dependencies in the schema

22

Trivial Dependencies

¨ A trivial functional dependency is satisfied by all
relation values!
¤ For a relation R containing attributes A and B,
A® A is a trivial dependency

á " t1, t2 Î r : t1[A] = t2[A] : t1[A] = t2[A] ñ
n Well, duh!

¤ AB® A is also a trivial dependency
n If t1[AB] = t2[AB], then of course t1[A] = t2[A] too!

¨ In general: a ® b is trivial if b Í a

23

Closure

¨ Given a set of functional dependencies, we can
infer other dependencies
¤ Given relation schema R(A, B, C)
¤ If A® B and B® C, holds on R,

then A® C also holds on R
¨ Given a set of functional dependencies F

¤ F+ denotes the closure of F
¤ F+ includes F, and all dependencies that can be

inferred from F. (F ⊆ F+)

24

Boyce-Codd Normal Form

¨ Eliminates all redundancy that can be discovered using
functional dependencies

¨ Given:
¤ Relation schema R
¤ Set of functional dependencies F

¨ R is in BCNF with respect to F if:
¤ For all functional dependencies a ® b in F+, where
a ⊆ R and b ⊆ R, at least one of the following holds:
n a ® b is a trivial dependency
n a is a superkey for R

¨ A database design is in BCNF if all schemas in the
design are in BCNF

25

BCNF Examples

¨ The bor_loan schema isn’t in BCNF
bor_loan(cust_id, loan_id, amount)
¤ loan_id® amount holds on bor_loan
¤ This is not a trivial dependency, and loan_id isn’t a superkey

for bor_loan
¨ The borrower and loan schemas are in BCNF
borrower(cust_id, loan_id)
¤ No nontrivial dependencies hold
loan(loan_id, amount)
¤ loan_id® amount holds on loan
¤ loan_id is the primary key of loan

26

BCNF Decomposition

¨ If R is a schema not in BCNF:
¤ There is at least one nontrivial functional dependency
a ® b such that a is not a superkey for R

¨ Replace R with two schemas:
(a ∪ b)
(R – (b – a))

n (stated this way in case a and b overlap; usually they don’t)

¨ The new schemas might also not be in BCNF!
¤ Repeat this decomposition process until all schemas are

in BCNF

27

Undoing the Damage

¨ For bor_loan, a = loan_id, b = amount
R = (cust_id, loan_id, amount)
(a ∪ b) = (loan_id, amount)
(R – (b – a)) = (cust_id, loan_id)

¨ Rules successfully decompose bor_loan back into
loan and borrower schemas

28

Review

¨ Normal forms are guidelines for what makes a
database design “good”
¤ Can formally specify them
¤ Can transform schemas into normal forms

¨ Functional dependencies specify constraints between
attributes in a schema
¤ A more general kind of constraint than key constraints

¨ Covered 1NF and BCNF
¤ 1NF requires all attributes to be atomic
¤ BCNF uses functional dependencies to eliminate redundant

data

29

Next Time!

¨ A big question to explore:
¤ Given a set of functional dependencies F, we need to

know what dependencies can be inferred from it!
n i.e. given F, how to compute F+

¤ BCNF needs this information, as do other normal forms

¨ Does Boyce-Codd Normal Form have drawbacks?
¤ (yes.)
¤ Motivates the development of 3rd Normal Form

30

