NORMAL FORMS

Equivalent Schemas

Many different schemas can represent a set of data
Which one is best?

What does “best” even mean?

Main goails:
Representation must be complete
Data should not be unnecessarily redundant
Should be easy to manipulate the information

Should be easy to enforce [most] constraints

Normal Forms

A “good” pattern for database schemas to follow is
called a normal form

Several different normal forms, with different
constraints

Normal forms can be formally specified

Can test a schema against a normal form
Can transform a schema into a normal form

Goal:

Design schemas that satisfy a particular normal form

If a schema isn’t “good,” transform it into an appropriate
normal form

Example Schema Design

Schema for representing loans and borrowers:

customer relation stores customer details, including a cust_id

primary-key attribute

loan(loan id, amount) loan_id | amount

borrower(cust_id, loan_id) L100 | 10000
Many-to-many mapping —

A customer can have

. cust_id | loan_id
multiple loans
A loan can be owned 23-652 | L-100
: 15-202 | L-100
by multiple customers oaso1 | 100

borrower

Larger Schema?

Could replace loan and borrower
larger, combined relation

relations with a

bor_loan(cust id, loan id, amount)

Rationale:

cust_id loan_id | amount
23-652 L-100 10000
15-202 L-100 10000
23-521 L-100 10000
bor_loan

Eliminates a join when retrieving loan amounts
Problem: mapping between customers and loans is

many-to-many

Multiple redundant copies of amount to keep in sync!

Repeated Values

How do we know that this is a problem?
“Because we see values that appear multiple times”
This isn’t a good enough reason!!!

Could easily have different loans with the same amount

A repeated value doesn’t

cust_id loan_id | amount

automatically indicate a

problem... 23652 | L-100 | 10000
19-065 [L-205 | 10000

15-202 L-100 10000
23-521 L-100 10000
20-419 L-205 10000

bor_loan

Back to the Enterprise

What are the rules of the enterprise that we are
modeling?

“Every loan must have only one amount.”

In other words:

Every loan ID corresponds to exactly one amount.

If there were a schema (loan_id, amount) then loan_id can
be a primary key.

Specified as a functional dependency

loan id — amount

loan_id functionally determines amount

Repeated Values v2.0

bor loan relation has both loan id and amount
attributes
bor_loan(cust_id, loan id, amount)

But, loan_id — amount, and loan_id by itself can’t be
a primary key in bor_loan

Need to support many-to-many mappings between
customers and loans

Combination of cust_id and loan_id must be a primary key,
so a particular loan_id value can appear multiple times

In rows with the same loan_id value, amount will have
to be repeated.

Functional Dependencies

Functional dependencies are very important in schema
analysis
Have a lot to do with keys!

“Good” schema designs are guided by functional
dependencies

Frequently helpful to identify them during schema design

Can formally define functional dependencies, and
reason about them

Can also specify constraints on schemas using
functional dependencies

Another Example Schema

A “large” schema for employee information
employee(emp id, emp_name, phone, title, salary, start_date)

emp_id emp_name phone title salary start_date

123-45-6789 | Jeff 555-1234 | CTO 120000 1996-03-15

314-15-9265 Mary 555-3141 | CFO 120000 1997-08-02

987-65-4321 Helen 555-9876 | Developer 90000 1996-05-23

101-01-0101 Marcus 555-1010 | Tester 70000 1995-11-04
employee

Employee ID is unique, but other attributes could have
duplicate values

Smaller Schemas?

Could represent this with two smaller schemas:

emp_ids(emp_id, emp_name)

emp_details(emp_name, phone, title, salary, start_date)

emp_id emp_name emp_name phone title salary start_date

123-45-6789 | Jeff Jeff 555-1234 | CTO 120000 1996-03-15

314-15-9265 Mary Mary 555-3141 | CFO 120000 1997-08-02

987-65-4321 Helen Helen 555-9876 | Developer 90000 1996-05-23

101-01-0101 Marcus Marcus 555-1010 | Tester 70000 1995-11-04
emp_ids emp _details

Generate original employee data with a join:

emp_ids X emp_details
Any problems with this?

emp_name is not uniquel

Joins using emp_name can generate invalid tuples!

emp_id emp_name emp_name phone title salary start_date
314-15-9265 | Mary Mary 555-3141 | CFO 120000 1997-08-02
161-80-3398 | Mary Mary 555-1618 | Gofer 25000 1998-01-07
emp_ids emp_details
Gemp_ids Xl emp_details
emp_id emp_name phone title salary start_date
314-15-9265 | Mary 555-1618 | Gofer 25000 1998-01-07
314-15-9265 | Mary 555-3141 | CFO 120000 1997-08-02
161-80-3398 | Mary 555-3141 | CFO 120000 1997-08-02
161-80-3398 | Mary 555-1618 | Gofer 25000 1998-01-07

Bad Decompositions

This decomposition is clearly broken

It can’t represent the information correctly!

Problem: enterprise needs to support different
employees with the same name

Lossy decompositions cannot accurately represent all
facts about an enterprise

Lossless decompositions can accurately represent all
facts

“Good” schema designs avoid lossy decompositions

First Normal Form

A schema is in first normal form (1NF) if all attribute
domains are atomic

An atomic domain has values that are indivisible units

E-R model supports non-atomic attributes
Multivalued attributes
Composite attributes
Relational model specifies atomic domains for
attributes
Schemas are automatically in 1NF

Mapping from E-R model to relational model changes
composite /multivalued attributes into an atomic form

1NF Example

E-R diagram for magazine subscriber
subscribers sub id
address is composite { email_addr }
address
email _addr is multivalued street
city
State
Zip_code

Converts to a 1NF schema:
subscriber(sub_id, street, city, state, zip_code)

sub_emails(sub_id, email _addr)

The conversion rules we have discussed, automatically
convert E-R schemas into 1NF

1NF and Non-Atomic Attributes

Many, but not all, SQL DBs have non-atomic types
Some offer support for composite attributes
Some offer support for multivalued attributes
These are SQL extensions — not portable
As long as you steer clear of using non-atomic attributes
in primary /foreign keys, can sometimes be quite useful
Will likely encounter them very rarely in practice, though

Biggest reason: DB support for list/vector column-types isn’t
terribly widespread, or always very easy to use

1NF and Non-Atomic Attributes (2)

Composite types:
e.g. defining an “address” composite type

Can definitely be useful for making a schema clearer, as
long as they aren’t used in a key!

Multivalued types:
e.g. arrays, lists, sets, vectors

Can sometimes be useful for storing pre-computed values
that aren’t expected to change frequently

If you are regularly issuing queries that search through or
change these values, you may need to revise your schemal

Should probably factor non-atomic data out into a separate table

Other Normal Forms

Other normal forms relate to functional
dependencies

Analysis of functional dependencies shows if a
schema needs decomposed

Keys are functional dependencies too!

Formally define functional dependencies, and
reason about them

Define normal forms in terms of functional
dependencies

Schemas and Constraints

Keys and functional dependencies are constraints that a
database must satisfy

Legal relations satisfy the required constraints
Relation doesn’t contain any tuples that violate the specified
constraints
More terminology:
Relation schema R, relation r(R)
A set of functional dependencies F
Relation r satisfies F if r is legal

When we say “F holds on R”, specifies the set of relations
with R as their schema, that are legal with respect to F

Functional Dependencies

Formal definition of a functional dependency:
Given a relation schema R with attribute-sets a, B < R
The functional dependency a — 3 holds on r(R) if
(V t, ty er:hlo] = tla] : {B] = H,[P])

In other words:

For all pairs of tuples t; and t, inr,
if t[a] = t,[a] then 1] = 1,[P]

o functionally determines [3

Dependencies and Superkeys

Given relation schema R, a subset K of R can be a
superkey

In a relation r(R), no two tuples can share the same values
for attributes in K

Can also say: K is a superkey if K > R

The functional dependency K — R holds if

(Vi, ty € r(R) : H[K] = #,[K] : #,[R] = #,[R])
t,[R] = t,[R] (or t; = t,) means t, and t, are the same tuple
The superkey K functionally determines the whole relation R

Functional dependencies are a more general form of
constraint than superkeys are.

The bor loan Relation

bor_loan(cust_id, loan_id, amount)

Functional dependency: loan_id — amount
“Every loan has exactly one amount.”

Every tuple in bor_loan with a given loan_id value must have
the same amount value

bor_loan also has a primary key
Specifies another functional dependency
cust_id, loan_id — cust_id, loan_id, amount

This is not a functional dependency specifically required by
what the enterprise needs to model

Can be inferred from other functional dependencies in the schema

Trivial Dependencies

A trivial functional dependency is satisfied by all
relation values!

For a relation R containing attributes A and B,
A — Ais a trivial dependency

(V 1, ty € r: H[A] = H[A] : 1[A] = H,[A])
Well, duh!

AB — A is also a trivial dependency
If +,[AB] = t,[AB], then of course t,[A] = t,[A] too!

In general: o — B is trivial if B < o

Closure

Given a set of functional dependencies, we can
infer other dependencies

Given relation schema R(A, B, C)

If A— B and B — C, holds on R,
then A — C also holds on R

Given a set of functional dependencies F
F* denotes the closure of F

F* includes F, and all dependencies that can be
inferred from F. (F C F™)

Boyce-Codd Normal Form

Eliminates all redundancy that can be discovered using
functional dependencies

Given:
Relation schema R
Set of functional dependencies F

R is in BCNF with respect to F if:

For all functional dependencies oo — P in F*, where
o € R and B € R, at least one of the following holds:

o — B is a trivial dependency
o is a superkey for R

A database design is in BCNF if all schemas in the
design are in BCNF

BCNF Examples

The bor loan schema isn’t in BCNF
bor_loan(cust id, loan _id, amount)

loan_id — amount holds on bor_loan

This is not a trivial dependency, and loan_id isn’t a superkey
for bor_loan

The borrower and loan schemas are in BCNF
borrower(cust id, loan id)

No nontrivial dependencies hold
loan(loan_id, amount)

loan id — amount holds on loan

loan_id is the primary key of loan

BCNF Decomposition

If R is a schema not in BCNF:

There is at least one nontrivial functional dependency
o. — [3 such that o is not a superkey for R

Replace R with two schemas:

(o U B)
(R=(Pp—a))

(stated this way in case a and 3 overlap; usually they don't)

The new schemas might also not be in BCNF!

Repeat this decomposition process until all schemas are

in BCNF

Undoing the Damage

For bor_loan, oo = loan_id, 3 = amount

R = (cust_id, loan_id, amount)

(o0 U B) = (loan_id, amount)

(R— (B — o)) = (cust_id, loan_id)

Rules successfully decompose bor_loan back into
loan and borrower schemas

Review

Normal forms are guidelines for what makes a
database design “good”

Can formally specify them

Can transform schemas into normal forms

Functional dependencies specify constraints between
attributes in a schema
A more general kind of constraint than key constraints

Covered TNF and BCNF

1NF requires all attributes to be atomic

BCNF uses functional dependencies to eliminate redundant
data

Next Timel

A big question to explore:

Given a set of functional dependencies F, we need to
know what dependencies can be inferred from it

i.e. given F, how to compute F*

BCNF needs this information, as do other normal forms

Does Boyce-Codd Normal Form have drawbacks?

(yes.)
Motivates the development of 3 Normal Form

