
ADVANCED E-R FEATURES
CS121: Relational Databases
Fall 2018 – Lecture 17

Extensions to E-R Model

¨ Basic E-R model is good for many uses
¨ Several extensions to the E-R model for more advanced

modeling
¤ Generalization and specialization
¤ Aggregation

¨ These extensions can also be converted to the relational
model
¤ Introduces a few more design choices

¨ Will only discuss specialization today
¤ See book §7.8.5 for details on aggregation

(material will be included with Assignment 5 too)

2

Specialization

¨ An entity-set might contain distinct subgroups of
entities
¤ Subgroups have some different attributes, not shared by the

entire entity-set

¨ E-R model provides specialization to represent such
entity-sets

¨ Example: bank account categories
¤ Checking accounts
¤ Savings accounts
¤ Have common features, but also unique attributes

3

Generalization and Specialization

¨ Generalization: a “bottom up” approach
¤ Taking similar entity-sets and unifying their common features
¤ Start with specific entities, then create generalizations from

them

¨ Specialization: a “top down” approach
¤ Creating general purpose entity-sets, then providing

specializations of the general idea
¤ Start with the general notion, then refine it

¨ Terms are basically equivalent
¤ Book refers to generalization as the overarching concept

4

Bank Account Example

¨ Checking and savings accounts both have:
¤ account number
¤ balance
¤ owner(s)

¨ Checking accounts also have:
¤ overdraft limit and associated overdraft account
¤ check transactions

¨ Savings accounts also have:
¤ minimum balance
¤ interest rate

5

Bank Account Example (2)

¨ Create entity-set to represent common attributes
¤ Called the superclass, or higher-level entity-set

¨ Create entity-sets to represent specializations
¤ Called subclasses, or lower-level entity-sets

¨ Join superclass to subclasses with hollow-head arrow(s)

account
acct_id
balance

checking
overdraft_limit

savings
min_balance
interest_rate

6

Inheritance

¨ Attributes of higher-level entity-sets are inherited by
lower-level entity-sets

¨ Relationships involving higher-level entity-sets are also
inherited by lower-level entity-sets!
¤ Lower-level entity-sets can also participate in their own

relationship-sets, separate from higher-level entity-set
¨ Usually, entity-sets inherit from one superclass

¤ Entity-sets form a hierarchy
¨ Can also inherit from multiple superclasses

¤ Entity-sets form a lattice
¤ Introduces many subtle issues, of course

7

Specialization Constraints

¨ Can an account be both a savings account and a checking
account?

¨ Can an account be neither a savings account nor a
checking account?

¨ Can specify constraints on specialization
¤ Enforce what “makes sense” for the enterprise

checking
overdraft_limit

account
acct_id
balance

savings
min_balance
interest_rate

8

Disjointness Constraints

¨ “An account cannot be both a checking account and a
savings account.”

¨ An entity may belong to at most one of the lower-
level entity-sets
¤ Must be a member of checking, or a member of savings, but

not both!
¤ Called a “disjointness constraint”
¤ A better way to state it: a disjoint specialization

¨ If an entity can be a member of multiple lower-level
entity-sets:
¤ Called an overlapping specialization

9

Disjointness Constraints (2)

¨ How the arrows are drawn indicates whether the
specialization is disjoint or overlapping

¨ Bank account example:
¤ One arrow split into

multiple parts indicates
a disjoint specialization

¤ An account may only be
a checking account, or a
savings account, not both

checking
overdraft_limit

account
acct_id
balance

savings
min_balance
interest_rate

10

Disjointness Constraints (3)

¨ Another example from the book:
¤ Specialization hierarchy for people

at a university
¨ Multiple separate arrows indicates

an overlapping specialization
¤ A person can be an employee

of the university and a student
¨ One arrow split into multiple

parts is a disjoint specialization
¤ An employee can be an instructor

or a secretary, but not both

instructor
rank

secretary
hours_per_week

person
ID
name
address

employee
salary

student
tot_credits

11

Completeness Constraints

¨ “An account must be a checking account, or it must be
a savings account.”

¨ Every entity in higher-level entity-set must also be a
member of at least one lower-level entity-set
¤ Called total specialization

¨ If entities in higher-level entity-set aren’t required to
be members of lower-level entity-sets:
¤ Called partial specialization

¨ account specialization is a total specialization

12

Completeness Constraints (2)

¨ Default constraint is partial specialization
¨ Specify total specialization constraint by annotating

the specialization arrow(s)
¨ Updated bank account diagram:

checking
overdraft_limit

account
acct_id
balance

savings
min_balance
interest_rate

total

13

Completeness Constraints (3)

¨ Same approach with overlapping specialization
¨ Example: people at a university

¤ Every person is an employee
or a student

¤ Not every employee is an
instructor or a secretary

¨ Annotate arrows pointing to
person with “total” to indicate
total specialization
¤ Every person must be an

employee, a student, or both
instructor
rank

secretary
hours_per_week

person
ID
name
address

employee
salary

student
tot_credits

total

14

Account Types?

¨ Our bank schema so far:

¨ How to tell whether an account is a checking
account or a savings account?
¤ No attribute indicates type of account

checking
overdraft_limit

account
acct_id
balance

savings
min_balance
interest_rate

total

15

Membership Constraints

¨ Membership constraints specify which lower-level
entity-sets each entity is a member of
¤ e.g. which accounts are checking or savings accounts

¨ Condition-defined lower-level entity-sets
¤ Membership is specified by a predicate
¤ If an entity satisfies a lower-level entity-set’s predicate then

it is a member of that lower-level entity-set
¤ If all lower-level entity-sets refer to the same attribute, this is

called attribute-defined specialization
n e.g. account could have an account_type attribute set to “c” for

checking, or “s” for savings

16

Membership Constraints (2)

¨ Entities may also simply be assigned to lower-level
entity-sets by a database user
¤ No explicit predicate governs membership
¤ Called user-defined membership

¨ Generally used when an entity’s membership could
change in the future

17

Final Bank Account Diagram

¨ Would also create relationship-sets against various
entity-sets in hierarchy
¤ associate customer with account
¤ associate check weak entity-set with checking

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

check_txn

check
check_number
check_date
recipient
amount
memo

depositor

customer
cust_id
name
street_address
city

18

Mapping to Relational Model

¨ Mapping generalization/specialization to relational
model is straightforward

¨ Create relation schema for higher-level entity-set
¤ Including primary keys, etc.

¨ Create schemas for lower-level entity-sets
¤ Subclass schemas include superclass’ primary key attributes!
¤ Primary key is same as superclass’ primary key

n Subclasses can also contain their own candidate keys!
n Enforce these candidate keys in implementation schema

¤ Foreign key reference from subclass schemas to superclass
schema, on primary-key attributes

19

Mapping Bank Account Schema

¨ Schemas:
account(acct_id, acct_type, balance)
checking(acct_id, overdraft_limit)
savings(acct_id, min_balance, interest_rate)
¤ Could use CHECK constraints on SQL tables for membership

constraints, other constraints (although it may be expensive)

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

20

Alternative Schema Mapping

¨ If specialization is disjoint and complete, could convert
only lower-level entity-sets to relational schemas
¤ Every entity in higher-level entity-set also appears in lower-

level entity-sets
¤ Every entity is a member of exactly one lower-level entity-

set
¨ Each lower-level entity-set has its own relation schema

¤ All attributes of superclass entity-set are included on each
subclass entity-set

¤ No relation schema for superclass entity-set

21

Alternative Account Schema

¨ Schemas, take 2:
checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance, interest_rate)

checking
overdraft_limit

account
acct_id
acct_type
balance

savings
min_balance
interest_rate

total

22

Alternative Account Schema (2)

¨ Alternative schemas:
checking(acct_id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance, interest_rate)

¨ Problems?
¤ Enforcing uniqueness of account IDs!
¤ Representing relationships involving both kinds of accounts

¨ Can solve by creating a simple relation:
account(acct_id)
¤ Contains all valid account IDs
¤ Relationships involving accounts can use account
¤ Need foreign key constraints again…

23

Generating Primary Keys

¨ Generating primary key values is actually the easy part
¨ Most databases provide sequences

¤ A source of unique, increasing INTEGER or BIGINT values
¤ Perfect for primary key values
¤ Multiple tables can use the same sequence for their primary keys

¨ PostgreSQL example:
CREATE SEQUENCE acct_seq;

CREATE TABLE checking (
acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);

CREATE TABLE savings (
acct_id INT PRIMARY KEY DEFAULT nextval('acct_seq');
...

);

24

Alternative Schema Mapping

¨ Alternative mapping has serious drawbacks
¤ Doesn’t actually give many benefits in general case

¨ Fewer drawbacks if:
¤ Total, disjoint specialization
¤ No relationships against superclass entity-set

¨ If specialization is overlapping, some details will be
stored multiple times
¤ Unnecessary redundancy, and consistency issues

¨ Also limits future schema changes
¤ Should always think about this when creating schemas

25

Recap: Weak Entity-Set Example

¨ account schema:
account(account_number, balance)

¨ check schema:
¤ Discriminator is check_number
¤ Primary key for check is: (account_number, check_number)
check(account_number, check_number, check_date,
recipient, amount, memo)

check_txn

check
check_number
check_date
recipient
amount
memo

account
account_number
balance

26

Schema Combination

¨ Relationship between weak entity-set and strong
entity-set doesn’t need represented separately
¤ Many-to-one relationship
¤ Weak entity-set has total participation
¤ Weak entity-set’s schema already captures the identifying

relationship

¨ Can apply this technique to other relationship-sets:
¤ One-to-many mapping, with total participation on the

“many” side

check_txn

check
check_number
check_date
recipient
amount
memo

account
account_number
balance

27

Schema Combination (2)

¨ Entity-sets A and B, relationship-set AB
¤ Many-to-one mapping from A to B
¤ A’s participation in AB is total

¨ Generates relation schemas A, B, AB
¤ Primary key of A is primary_key(A)
¤ Primary key of AB is also primary_key(A)

n (A is on “many” side of mapping)
¤ AB has foreign key constraints on both A and B
¤ There is one relationship in AB for every entity in A

¨ Can combine A and AB relation schemas
¤ Primary key of combined schema still primary_key(A)
¤ Only requires one foreign-key constraint, to B

A BAB

28

Schema Combination (3)

¨ In this case, when relationship-set is combined into the
entity-set, the entity-set’s primary key doesn’t change!

¨ If A’s participation in AB is partial,
can still combine schemas
¤ Must store null values for primary_key(B) attributes when an

entity in A maps to no entity in B
¨ If AB is one-to-one mapping:

¤ Can also combine schemas in this case
¤ Could incorporate AB into schema for A, or schema for B
¤ Don’t forget that AB has two candidate keys…

n The combined schema must still enforce both candidate keys

A BAB

A BAB

29

Schema-Combination Example

¨ Manager to worker mapping is one-to-many
¨ Relation schemas were:
employee(employee_id, name)
works_for(employee_id, manager_id)

¨ Could combine into:
employee(employee_id, name, manager_id)
¤ (A very common schema combination)
¤ Need to store null for employees with no manager

works_for
manager

worker

employee
employee_id
name

30

Schema Combination Example (2)

¨ One-to-one mapping between customers and loans
customer(cust_id, name, street_address, city)
loan(loan_id, amount)
borrower(cust_id, loan_id) – loan_id also a candidate key

¨ Could combine borrower schema into customer schema
or loan schema
¤ Does it matter which one you choose?

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

31

Schema Combination Example (3)

¨ Participation of loan in borrower will be total
¤ Combining borrower into customer would require null values

for customers without loans
¨ Better to combine borrower into loan schema
customer(cust_id, name, street_address, city)
loan(loan_id, cust_id, amount)
¤ No null values!

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

32

Schema Combination Example (4)

¨ Schema:
customer(cust_id, name, street_address, city)
loan(loan_id, cust_id, amount)

¨ What if, after a while, we wanted to change the
mapping cardinality?
¤ Schema changes would be significant
¤ Would need to migrate existing data to a new schema

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

33

Schema Combination Notes

¨ Benefits of schema combination:
¤ Usually eliminates one foreign-key constraint, and the

associated performance impact
n Constraint enforcement
n Extra join operations in queries

¤ Reduces storage requirements
¨ Drawbacks of schema combination:

¤ May necessitate the use of null values to represent the
absence of relationships

¤ Makes it harder to change mapping cardinality
constraints in the future

34

