ADVANCED E-R FEATURES



Extensions to E-R Model

Basic E-R model is good for many uses
Several extensions to the E-R model for more advanced
modeling

Generalization and specialization

Aggregation
These extensions can also be converted to the relational
model

Introduces a few more design choices

Will only discuss specialization today

See book §7.8.5 for details on aggregation
(material will be included with Assignment 5 too)



Specialization

An entity-set might contain distinct subgroups of
entities

Subgroups have some different attributes, not shared by the
entire entity-set

E-R model provides specialization to represent such
entity-sets

Example: bank account categories
Checking accounts
Savings accounts

Have common features, but also unique attributes



Generalization and Specialization

Generalization: a “bottom up” approach
Taking similar entity-sets and unifying their common features

Start with specific entities, then create generalizations from
them

Specialization: a *“top down” approach

Creating general purpose entity-sets, then providing
specializations of the general idea

Start with the general notion, then refine it

Terms are basically equivalent

Book refers to generalization as the overarching concept



Bank Account Example

Checking and savings accounts both have:
account number
balance
owner(s)
Checking accounts also have:
overdraft limit and associated overdraft account

check transactions

Savings accounts also have:
minimum balance

interest rate



Bank Account Example (2)

Create entity-set to represent common attributes

Called the superclass, or higher-level entity-set

Create entity-sets to represent specializations

Called subclasses, or lower-level entity-sets

Join superclass to subclasses with hollow-head arrow(s)

account

acct id
balance

I

checking savings

overdraft_limit min_balance
interest rate




Inheritance

Attributes of higher-level entity-sets are inherited by
lower-level entity-sets

Relationships involving higher-level entity-sets are also
inherited by lower-level entity-sets!

Lower-level entity-sets can also participate in their own
relationship-sets, separate from higher-level entity-set

Usually, entity-sets inherit from one superclass
Entity-sets form a hierarchy

Can also inherit from multiple superclasses
Entity-sets form a lattice
Introduces many subtle issues, of course



Specialization Constraints

account

acct id
balance

I

checking savings

overdraft_limit min_balance
interest rate

Can an account be both a savings account and a checking
account?

Can an account be neither a savings account nor @
checking account?

Can specify constraints on specialization
Enforce what “makes sense” for the enterprise




Disjointness Constraints

“An account cannot be both a checking account and a
savings account.”

An entity may belong to at most one of the lower-
level entity-sets

Must be a member of checking, or a member of savings, but
not both!

Called a “disjointness constraint”
A better way to state it: a disjoint specialization

If an entity can be a member of multiple lower-level
entity-sets:

Called an overlapping specialization




Disjointness Constraints (2)

How the arrows are drawn indicates whether the
specialization is disjoint or overlapping

Bank account example:

account
One arrow split into acct id
multiple parts indicates balance
a disjoint specialization ?
An account may only be : :

heckin ; checking savings

= C. ecking dccount, or d overdraft_limit min_balance
savings account, not both interest_rate




Disjointness Constraints (3)

Another example from the book:

Specialization hierarchy for people
at a university

Multiple separate arrows indicates
an overlapping specialization

person

1D
name
address

S\

A person can be an employee

employee student

of the university and a student

salary tot_credits

I

One arrow split into multiple

parts is a disjoint specialization
instructor

secretary

An employee can be an instructor | rank

hours per week

or a secretary, but not both




Completeness Constraints

“An account must be a checking account, or it must be
a savings account.”

Every entity in higher-level entity-set must also be a
member of at least one lower-level entity-set

Called total specialization

If entities in higher-level entity-set aren’t required to
be members of lower-level entity-sets:

Called partial specialization

account specialization is a total specialization



Completeness Constraints (2)

Default constraint is partial specialization

Specify total specialization constraint by annotating
the specialization arrow(s)

Updated bank account diagram:

account

acct id
balance

checking savings

overdraft_limit min_balance
interest rate




Completeness Constraints (3)

Same approach with overlapping specialization

Example: people at a university

person
Every person is an employee ID
or a student hame
address

Not every employee is an /4 \ total

instructor or a secretary

employee student

Annotate arrows pointing to
salary tot_credits

person with “total” to indicate ?
total specialization

Every person must be an instructor secretary
employee, a student, or both rank hours_per_week




Account Types?

Our bank schema so far:

account

acct id
balance

checking savings

overdraft_limit min_balance
interest rate

How to tell whether an account is a checking
account or a savings account?

No attribute indicates type of account



Membership Constraints

Membership constraints specify which lower-level
entity-sets each entity is a member of

e.g. which accounts are checking or savings accounts

Condition-defined lower-level entity-sets

Membership is specified by a predicate

If an entity satisfies a lower-level entity-set’s predicate then
it is a member of that lower-level entity-set

If all lower-level entity-sets refer to the same attribute, this is
called attribute-defined specialization

e.g. account could have an account_type attribute set to “c” for
checking, or “s” for savings



Membership Constraints (2)

Entities may also simply be assigned to lower-level
entity-sets by a database user

No explicit predicate governs membership
Called user-defined membership

Generally used when an entity’s membership could
change in the future




Final Bank Account Diagram

customer

cust id

name

Street _address
city

check

check date
recipient
amount
memo

check number

o g = -

G

account

acct id
acct _type
balance

v

checking

savings

overdraft limit

min_balance

interest rate

Would also create relationship-sets against various

entity-sets in hierarchy

associate customer with account
associate check weak entity-set with checking



Mapping to Relational Model

Mapping generalization/specialization to relational
model is straightforward

Create relation schema for higher-level entity-set
Including primary keys, etc.

Create schemas for lower-level entity-sets

Subclass schemas include superclass’ primary key attributes!

Primary key is same as superclass’ primary key
Subclasses can also contain their own candidate keys!
Enforce these candidate keys in implementation schema

Foreign key reference from subclass schemas to superclass
schema, on primary-key attributes



Mapping Bank Account Schema

account
acct id
acct _type
balance

checking savings

overdraft_limit min_balance
interest rate

Schemas:
account(acct id, acct_type, balance)
checking(acct id, overdraft_limit)
savings(acct _id, min_balance, interest_rate)

Could use CHECK constraints on SQL tables for membership
constraints, other constraints (although it may be expensive)



Alternative Schema Mapping

If specialization is disjoint and complete, could convert
only lower-level entity-sets to relational schemas

Every entity in higher-level entity-set also appears in lower-
level entity-sets

Every entity is a member of exactly one lower-level entity-
set

Each lower-level entity-set has its own relation schema

All attributes of superclass entity-set are included on each
subclass entity-set

No relation schema for superclass entity-set



Alternative Account Schema

account
acct id
acct _type
balance

checking savings

overdraft_limit min_balance
interest rate

Schemas, take 2:

checking(acct id, acct_type, balance, overdraft_limit)

savings(acct id, acct_type, balance, min_balance, interest_rate)



Alternative Account Schema (2)

Alternative schemas:
checking(acct id, acct_type, balance, overdraft_limit)
savings(acct_id, acct_type, balance, min_balance, interest_rate)

Problems?
Enforcing uniqueness of account IDs!
Representing relationships involving both kinds of accounts

Can solve by creating a simple relation:

account(acct id)
Contains all valid account IDs
Relationships involving accounts can use account

Need foreign key constraints again...



Generating Primary Keys

Generating primary key values is actually the easy part
Most databases provide sequences

A source of unique, increasing INTEGER or BIGINT values
Perfect for primary key values
Multiple tables can use the same sequence for their primary keys

PostgreSQL example:
CREATE SEQUENCE acct_ segq;

CREATE TABLE checking (
acct id INT PRIMARY KEY DEFAULT nextval ('acct seq');

);...

CREATE TABLE savings (
acct id INT PRIMARY KEY DEFAULT nextval ('acct seq');

);...



Alternative Schema Mapping

Alternative mapping has serious drawbacks
Doesn’t actually give many benefits in general case
Fewer drawbacks if:
Total, disjoint specialization
No relationships against superclass entity-set

If specialization is overlapping, some details will be
stored multiple times

Unnecessary redundancy, and consistency issues

Also limits future schema changes

Should always think about this when creating schemas



Recap: Weak Entity-Set Example

check
account check_number
account number check_date
balance recipient
amount
memo

account schema:
account(account _number, balance)

check schema:
Discriminator is check _number
Primary key for check is: (account_number, check_number)

check(account _number, check _number, check_date,
recipient, amount, memo)




Schema Combination

Relationship between weak entity-set and strong
entity-set doesn’t need represented separately
Many-to-one relationship
Weak entity-set has total participation

Weak entity-set’s schema already captures the identifying
relationship

Can apply this technique to other relationship-sets:

One-to-many mapping, with total participation on the

“many” side
check

account check_number
account number ChQC/f_date
balance recipient
amount

memo




Schema Combination (2)

Entity-sets A and B, relationship-set AB

Many-to-one mapping from A to B
A’s participation in AB is total A

Generates relation schemas A, B, AB
Primary key of A is primary_key(A)
Primary key of AB is also primary_key(A)
(A is on “many” side of mapping)
AB has foreign key constraints on both A and B
There is one relationship in AB for every entity in A

Can combine A and AB relation schemas
Primary key of combined schema still primary_key(A)
Only requires one foreign-key constraint, to B



Schema Combination (3)

In this case, when relationship-set is combined into the
entity-set, the entity-set’s primary key doesn’t change!

If A’s participation in AB is partial,
can still combine schemas

A

B

Must store null values for primary_key(B) attributes when an

entity in A maps to no entity in B

If AB is one-to-one mapping:
Can also combine schemas in this case

A

B

Could incorporate AB into schema for A, or schema for B

Don’t forget that AB has two candidate keys...
The combined schema must still enforce both candidate keys




Schema-Combination Example

employee _manager
employee id <WOI’ ks_for
name worker

Manager to worker mapping is one-to-many
Relation schemas were:

employee(employee id, name)

works_for(employee id, manager_id)

Could combine into:
employee(employee id, name, manager_id)

(A very common schema combination)
Need to store null for employees with no manager



Schema Combination Example (2)

customer
cust id loan
name borrower loan_id
Street _address amount
city

One-to-one mapping between customers and loans
customer(cust_id, name, street_address, city)
loan(loan id, amount)
borrower(cust id, loan_id) — loan_id also a candidate key
Could combine borrower schema into customer schema
or loan schema

Does it matter which one you choose?




Schema Combination Example (3)

customer
cust id loan
name borrower loan_id
Street _address amount
city

Participation of loan in borrower will be total

Combining borrower into customer would require null values
for customers without loans

Better to combine borrower into loan schema
customer(cust_id, name, street_address, city)
loan(loan id, cust_id, amount)

No null values!




Schema Combination Example (4)

customer
cust id loan
name borrower loan id
Street _address amount
city
Schema:

customer(cust_id, name, street_address, city)
loan(loan id, cust_id, amount)

What if, after a while, we wanted to change the
mapping cardinality?

Schema changes would be significant

Would need to migrate existing data to a new schema



Schema Combination Notes

Benefits of schema combination:

Usually eliminates one foreign-key constraint, and the
associated performance impact

Constraint enforcement
Extra join operations in queries

Reduces storage requirements

Drawbacks of schema combination:

May necessitate the use of null values to represent the
absence of relationships

Makes it harder to change mapping cardinality
constraints in the future



