ENTITY-RELATIONSHIP
MODEL Il

N-ary Relationships

Can specify relationships of degree > 2 in E-R model

Example:

job
title
level

omployoo branch

' branch name
employee id works on branch_city
employee _name assets

Employees are assigned to jobs at various branches
Many-to-many mapping: any combination of employee,
job, and branch is allowed

An employee can have several jobs at one branch

N-ary Mapping Cardinalities

Can specify some mapping cardinalities on
relationships with degree > 2

Each combination of employee and branch can only
be associated with one job:

Jjob
title
level

p——— branch
- branch name
employee id '
branch_city
employee name assets

Each employee can have only one job at each branch

N-ary Mapping Cardinalities (2)

For degree > 2 relationships, we only allow at most one edge
with an arrow

Reason: multiple arrows on N-ary relationship-set is ambiguous
(several meanings have been defined for this in the past)

Relationship-set R associating entity-sets A;, A,, ..., A
No arrows on edges A, ..., A

1

Arrows are on edgesto A, ..., A

4]

n

A Primary key:

Meaning 1 (the simpler one): (a, b)
A particular combination of entities in
A,, ..., A can be associated with at B R C
most one set of entitiesin A, ..., A

Primary key of R is union of primary
keys from set { A, A,, ..., A. }

I

Meaning 1:

D (@4, ba, C3, ds)
(@s, by, C3, do)

(@3, by, Cg, dg)

N-ary Mapping Cardinalities (3)

Relationship-set R associating entity-sets A;, A,, ..., A
No arrows on edges A;, ..., A, ; arrows on edgesto A.,,, ..., A

Meaning 2 (the insane one):

For each entity-set A, (i < k < n), a particular combination of entities
from all other entity-sets can be associated with at most one entity in A,

R has a candidate key for each arrow in N-ary relationship-set

For each k (i < k < n), another candidate key of R is union of primary
keys from entity-sets { A;, Ay, <o, Aiyy Arsry <or A, }

A Two candidate keys: Meaning 2:
(a, b, ¢), (a b, d) (a1, b2, C3, d5)
(@3, by, €3, d2)
B C (a1, by, Cq, dy)
(as, by, Cs, d7) All disallowed
~@r-bzr-635-€s)>- [by meaning 1!

N-ary Mapping Cardinalities (4)

Both interpretations of multiple arrows have been
used in books and papers...

If we only allow one edge to have an arrow, both
definitions are equivalent

The ambiguity disappears

Binary vs. N-ary Relationships

Often have only binary relationships in DB schemas

For degree > 2 relationships, could
replace with binary relationships

Replace N-ary relationship-set

with a new entity-set E B

Create an identifying attribute for E
e.g. an auto-generated ID value

Create a relationship-set between
E and each other entity-set

A

(a;, b;, cj)

A

. . (ei’ ai)
Relationships in R must be @

represented in R,, R, and R,

5 |G
(ei’ bl)

I (e, Ci)

Binary vs. N-ary Relationships (2)

Are these representations identical?

Example: Want to represent a relationship
between entities az, b; and c,

How many relationships can we actually
have between these three entities¢

Ternary relationship set:
Can only store one relationship between

as, b; and ¢y, due to primary key of R
Alternate approach:

(a;, b;, cj)

Can create many relationships between

A

these entities, due to the entity-set E |

(051 e])l (bll e])l (C2l e])

(ei’ ai)
(a5, €5), (b1, €2), (€2 €)) @

Can’t constrain in exactly the same ways

5 |G
(ei’ bl)

I (e, Ci)

Binary vs. N-ary Relationships (3)

Using binary relationships is sometimes more intuitive
for particular designs
Example: office-equipment inventory database

Ternary relationship-set inventory, associating department,
machine, and vendor entity-sets

What if vendor info is unknown for some machines?

For ternary relationship, must use null values to represent
missing vendor details

With binary relationships, can simply not have a relationship
between machine and vendor

For cases like these, use binary relationships

If it makes sense to model as separate binary relationships,
do it that way!

Course Database Example

What about this case:

Ternary relationship between student, assignment, and

submission

Need to allow multiple submissions for a particular
assignment, from a particular student

In this case, it could make
sense to represent as a
ternary relationship

Doesn’t make sense

to have only two of
student

these three entities
in a relationship

username

assignment

shorthame
due date
url

submission
sub id
submit_date
data

Course Database Example (2)

Other ways to represent students, assignments and
submissions?

Can also represent as two binary relationships

student

username

submit

>3

submission

sub id

submit_date
data

assignment

shortname

due date
url

Note the total participation constraints!

Required to ensure that every submission has an associated
student, and an associated assignment

Also, two one-to-many constraints

Course Database Example (3)

Could even make submission a weak entity-set
Both student and assignment are identifying entities!

student
username

Discriminator for submission is version number

submission

version

submit_date
data

assignment

shortname

Primary key for submission ¢
Union of primary keys from all owner entity-sets, plus

discriminator

(username, shortname, version)

(.

due date
url

Binary vs. N-ary Relationships

Sometimes ternary relationships are best
Clearly indicates all entities involved in relationship
Only way to represent certain constraints!

Bank jobs example: job

title
level

branch

employee
. branch _name
employee id ;
branch_city
employee name
assets

Each (employee, branch) pair can have only one job

Simply cannot construct the same constraint using only binary
relationships

(Reason is related to issue identified on slide 8)

E-R Model and Real Databases

For E-R model to be useful, need to be able to
convert diagrams into an implementation schema

Turns out to be very easy to do this!
Big overlaps between E-R model and relational model

Biggest difference is E-R composite /multivalued attributes,
vs. relational model atomic attributes
Three components of conversion process:
Specify schema of the relation itself
Specify primary key on the relation
Specify any foreign key references to other relations

Strong Entity-Sets

Strong entity-set E with attributes a,, a,, ..., @

n

Assume simple, single-valued attributes for now

Create a relation schema with same name E, and

same attributes a,, a,, ..., a,

Primary key of relation schema is same as primary
key of entity-set

Strong entity-sets require no foreign keys to other things

Every entity in E is represented by a tuple in the
corresponding relation

Entity-Set Examples

Geocache location E-R diagram: location

latitude
longitude
description
last _visited

Entity-set named location

Convert to relation schema:

location(latitude, longitude, description, last_visited)

Entity-Set Examples (2)

E-R diagram for customers and loans:

access _date

customer :
cust id /\ loan
name borrower loan_id
Street _address amount
city

Convert customer and loan entity-sets:

customer(cust_id, name, street_address, city)

loan(loan id, amount)

Relationship-Sets

Relationship-set R

For now, assume that all participating entity-sets are strong
entity-sets

d,, Os, ..., 4. is the union of all participating entity-sets’
primary key attributes

b,, by, ..., b, are descriptive attributes on R (if any)
Relational model schema for R is:
{all Aoy eeey C’m} U {b1l b2! cey bn}

{a,, a,, ..., a,} is a superkey, but not necessarily a
candidate key

Primary key of R depends on R’s mapping cardinality

Relationship-Sets: Primary Keys

For binary relationship-sets:

e.g. between strong entity-sets A and B
If many-to-many mapping:

Primary key of relationship-set is union of all
entity-set primary keys

primary_key(A) U primary_key(B)
If one-to-one mapping:
Either entity-set’s primary key is acceptable
primary_key(A), or primary_key(B)
Enforce both candidate keys in DB schemal

Relationship-Sets: Primary Keys (2)

For many-to-one or one-to-many mappings:
e.g. between strong entity-sets A and B
Primary key of entity-set on “many” side is primary key of
relationship

Example: relationship R between A and B
One-to-many mapping, with B on “many” side

Schema contains primary_key(A) U primary_key(B), plus any
descriptive attributes on R
primary_key(B) is primary key of R

Each a € A can map to many b € B

Each value for primary_key(B) can appear only once in R

Relationship-Set Foreign Keys

Relationship-sets associate entities in entity-sets

We need foreign-key constraints on relation schema for R !

For each entity-set E. participating in R :
Relation schema for R has a foreign-key constraint on E,
relation, for primary_key(E.) attributes
Relation schema notation doesn’t provide mechanism
for indicating foreign key constraints

Don’t forget about foreign keys and candidate keys!

Making notes on your relational model schema is a very good idea

Can specify both foreign key constraints and candidate keys
in the SQL DDL

Relationship-Set Example

access _date

customer :
cust id /\ loan
name borrower loan_id
Street _address amount
city

Relation schema for borrower:
Primary key of customer is cust_id
Primary key of loan is loan_id
Descriptive attribute access_date
borrower mapping cardinality is many-to-many
Result: borrower(cust id, loan id, access_date)

Relationship-Set Example (2)

employee

employee id Jnanager
name <Works_for
{ phone_number?} | worker

num_reports ()

In cases like this, must use roles to distinguish between
the entities involved in the relationship-set

employee participates in works_for relationship-set twice

Can’t create a schema (employee_id, employee_id) |
Change names of key-attributes to distinguish roles

e.g. (manager_employee_id, worker_employee_id)

e.g. (manager_id, employee_id)

Relationship-Set Example (2)

employee

employee id ~nanager

name <Works_for
{ phone_number?} | worker
num_reports ()

Relation schema for employee entity-set:
(For now, ignore phone_number and num_reports...)
employee(employee id, name)

Relation schema for works_ for:
One-to-many mapping from manager to worker
“Many” side is used for primary key
Result: works_for(employee id, manager_id)

N-ary Relationship Primary Keys

For degree > 2 relationship-sets:

If no arrows (“many-to-many” mapping), relationship-
set primary key is union of all participating entity-sets’
primary keys

If one arrow (“one-to-many” mapping), relationship-set
primary key is union of primary keys of entity-sets
without an arrow

Don’t allow more than one arrow for relationship-sets
with degree > 2

N-ary Relationship-Set Example

Jjob
title
level

p——— branch
- branch name
employee id '
branch_city
employee name assets

Entity-set schemas:
job(title, level)

employee(employee_id, employee_name)
branch(branch_name, branch_city, assets)

Relationship-set schema:

Primary key includes entity-sets on non-arrow links
works_on(employee_id, branch_name, title)

Weak Entity-Sets

Weak entity-sets depend on at least one strong
entity-set
The identifying entity-set, or owner entity-set

Relationship between the two is called the identifying
relationship

Weak entity-set A owned by strong entity-set B
Attributes of A are {a,, a,, ..., a,}
Some subset of these attributes comprises the discriminator of A
primary_key(B) = {b,, by, ..., b,}
Relation schema for A: {a,,a,,...,0,} U {b;,b,,...,b,}
Primary key of A is discriminator(A) U primary_key(B)
A has a foreign key constraint on primary_key(B), to B

ldentifying Relationship?

The identifying relationship is many-to-one, with no
descriptive attributes

Relation schema for weak entity-set already
includes primary key for strong entity-set

Foreign key constraint is imposed, too

No need to create relational model schema for the
identifying relationship

Would be redundant to the weak entity-set’s relational
model schemal

Weak Entity-Set Example

check
account check_number
account number check_date
balance recipient
amount
memo

account schema:
account(account _number, balance)

check schema:
Discriminator is check _number
Primary key for check is: (account_number, check_number)

check(account _number, check _number, check_date,
recipient, amount, memo)

Weak Entity-Set Example (2)

student

username

Schemas for strong entity-sets:

student(username)

assignment(shortname, due_date, url)

submission

version

submit_date
data

assignment

shortname

(.

due date
url

Schema for submission weak entity-set:
Discriminator is version
Both student and assignment are owners!

submission(username, shortname, version, submit_date, data)

Two foreign keys in this relation as well

Composite Attributes

Relational model simply doesn’t handle composite
attributes
All attribute domains are atomic in the relational model

When mapping E-R composite attributes to relation
schema: simply flatten the composite

Each component attribute maps to a separate attribute
in relation schema

In relation schema, simply can’t refer to the composite
as a whole

(Can adjust this mapping for databases that support
composite types)

Composite Attribute Example

Customers with addresses: customer
cust id
name
address
Street
city
State
Zip _code

Each component of address becomes a separate
attribute

customer(cust _id, name, street, city, state, zip_code)

Multivalued Attributes

Multivalued attributes require a separate relation

Again, no such thing as a multivalued attribute in the
relational model

E-R constraint on multivalued attributes: in a specific entity’s
multivalued attribute, each value may only appear once

For a multivalued attribute M in entity-set E

Create a relation schema R to store M, with attribute(s) A
corresponding to the single-valued version of M

Attributes of R are: primary_key(E) U A

Primary key of R includes all attributes of R
Each value in M for an entity e must be unique

Foreign key from R to E, on primary_key(E) attributes

Multivalued Attribute Example

Change our E-R diagram to allow customer

customers to have multiple addresses: —f,‘;f,f,e'd

{ address
Street
city
state
Zip_code }

Now, must create a separate relation to store the
addresses

customer(cust_id, name)

cust_addrs(cust_id, street, city, state, zipcode)

Large primary keys aren’t ideal — tend to be costly

