DATABASE SCHEMA DESIGN
ENTITY-RELATIONSHIP MODEL

Designing Database Applications

Database applications are large and complex

A few of the many design areas:
Database schema (physical /logical /view)
Programs that access and update data

Security constraints for data access

Also requires familiarity with the problem domain

Domain experts must help drive requirements

General Approach

Collect user requirements
Information that needs to be represented
Operations to perform on that information

Several techniques for representing this info, e.g. UML

Develop a conceptual schema of the database

A high-level representation of the database’s structure and
constraints

Physical and logical design issues are ignored at this stage

Follows a specific data model
Often represented graphically

Conceptual Schema

Also need to create a specification of functional

requirements

“What operations will be performed against the data?”

Updating data, adding data, deleting datq, ...

Designer can use functional requirements to verify the
conceptual schema

Is each operation possible?

How complicated or involved is it¢

Performance or scalability concerns?

Implementation Phases

Once conceptual schema and functional requirements
are verified:

Convert conceptual schema into an implementation data
model

Want to have a simple mapping from conceptual model to
implementation model

Finally: any necessary physical design
Not always present!
Smaller applications have few physical design concerns

Larger systems usually need additional design and tuning
(e.g. indexes, disk-level partitioning of data)

Importance of Design Phase

Not all changes have the same impact!

Physical-level changes have the least impact
(Thanks, relational modell)
Typically affect performance, scalability, reliability
Little to no change in functionality

Logical-level changes are typically much bigger
Affects how to interact with the data...

Also affects what is even possible to do with the data

Very important to spend time up front designing the
database schema

Design Decisions

Many different ways to represent data

Must avoid two major problems:

Unnecessary redundancy

Redundant information wastes space
Greater potential for inconsistency!

ldeally: each fact appears in exactly one place

Incomplete representation

Schema must be able to fully represent all details and
relationships required by the application

More Design Decisions

Even with correct design, usually many other
concerns

How easy/hard is it to access useful information?
(e.g. reporting or summary info)

How hard is it to update the system?

Performance considerations?

Scalability considerations?
Schema design requires a good balance between
aesthetic and practical concerns

Frequently need to make compromises between
conflicting design principles

The Entity-Relationship Model

A very common model for schema design

Also written as “E-R model”

Allows for specification of complex schemas in
graphical form

Basic concepts are simple, but can also represent very
sophisticated abstractions
e.g. type hierarchies
Can be mapped very easily to the relational model!
Simplifies implementation phase

Mapping process can be automated by design tools

Entities and Entity-Sets

An entity is any “thing” that can be uniquely
represented

e.g. a product, an employee, a software defect

Each entity has a set of attributes

Entities are uniquely identified by some set of attributes

An entity-set is a named collection of entities of the

same type, with the same attributes

Can have multiple entity-sets with same entity type,
representing different (possibly overlapping) sets

Entities and Entity-Sets (2)

An entity has a set of attributes

Each attribute has a name and domain

Each attribute also has a corresponding value

Entity-sets also specify a set of attributes

Every entity in the entity-set has the same set of
attributes

Every entity in the entity-set has its own value for each
attribute

Diagramming an Entity-Set

Example: a customer entity-set

Attributes:
cust i d customer
cust _id
name name
Street _address
street_address city
city

Entity-set is denoted by a box
Name of entity-set is given in the top part of box

Attributes are listed in the lower part of the box

Relationships

A relationship is an association between two or more
entities

e.g. a bank loan, and the customer who owns it
A relationship-set is a named collection of
relationships of the same type

i.e. involving the same entities
Formally, a relationship-set is a mathematical relation
involving n entity-sets, n > 2

E,, E, ..., E, are entity sets; e, e,, ... are entities in E;,
Eo...
A relationship set R is a subset of:
{(e;, ey .-e,€,) | €, €E;,e,€E,, ...,e, €E, }
(e, €y, --., €,) is a specific relationship in R

Relationships (2)

Entity-sets participate in relationship-sets

Specific entities participate in a relationship instance

Example: bank loans

customer and loan are entity-sets

(555-55-5555, Jackson, Woodside) is a customer entity
(L-14, 1500) is a loan entity

borrower is a relationship-set

customer and loan participate in borrower

borrower contains a relationship instance that associates customer
“Jackson” and loan “L-14”

Relationships and Roles

An entity’s role in a relationship is the function that the
entity fills

Example: a purchase relationship between a product
and a customer

the product’s role is that it was purchased

the customer did the purchasing

Roles are usually obvious, and therefore unspecified
Entities participating in relationships are distinct...
Names clearly indicate the roles of various entities...

In these cases, roles are left unstated.

Relationships and Roles (2)

Sometimes the roles of entities are not obvious

Situations where entity-sets in a relationship-set are not
distinct

Example: a relationship-set named works_for,
specifying employee /manager assignments

Relationship involves two entities, and both are employee
entities

Roles are given names to distinguish entities

The relationship is a set of entities ordered by role:
(manager, worker)

First entity’s role is named manager
Second entity’s role is named worker

Relationships and Attributes

Relationships can also have attributes!

Called descriptive attributes

They describe a particular relationship
They do not identify the relationship!
Example:

The relationship between a software defect and an employee can
have a date_assigned attribute

Note: this distinction between entity attributes and
relationship attributes is not made by relational model

Entity-relationship model is a higher level of abstraction than
the relational model

Relationships and Attributes (2)

Specific relationships are identified only by the
participating entities
...not by any relationship attributes!

Different relationships are allowed to have the same value for a
descriptive attribute

(This is why entities in an entity-set must be uniquely identifiable.)
Given:
Entity-sets A and B, both participating in a relationship-set R

Specific entities a € A and b € B can only have one
relationship instance in R

Otherwise, we would require more than just the participating
entities to uniquely identify relationships

Degree of Relationship Set

Most relationships in a schema are binary

Two entities are involved in the relationship

Sometimes there are ternary relationships
Three entities are involved

Far less common, but still useful at times

The number of entity-sets that participate in a
relationship-set is called its degree

Binary relationship: degree = 2

Ternary relationship: degree = 3

Diagramming a Relationship-Set

Example: the borrower relationship-set between the
customer and loan entity-sets

access_date

customer :
CUSt_id /\ loan
name borrower loan_id
Street _address amount
city

Relationship-set is a diamond
Connected to participating entity-sets by solid lines
Relationship-set can have descriptive attributes
Listed in another box, connected with a dotted-line

Attribute Structure

Each attribute has a domain or value set

Values come from that domain or value set

Simple attributes are atomic — they have no subparts

e.g. amount attribute is a single numeric value

Composite attributes have subparts

Can refer to composite attribute as a whole
Can also refer to subparts individually

e.g. address attribute, composed of street, city, state,
postal_code attributes

Attribute Cardinality

Single-valued attributes only store one value

e.g. a customer’s cust_id only has one value

Multi-valued attributes store zero or more values

e.g. a customer can have multiple phone_number values
A multi-valued attribute stores a set of values, not a multiset

Different customer entities can have different sets of phone
numbers

Lower and upper bounds can be specified too

Can set upper bound on phone_number to 2

Attribute Source

Base attributes (aka source attributes) are stored in
the database

e.g. the birth_date of a customer entity

Derived attributes are computed from other

attributes

e.g. the age of a customer entity would be computed
from their birth_date

Diagramming Attributes

Example: Extend customers with more detailed info

Composite attributes are shown customer
as a hierarchy of values cust_id
name
Indented values are components ﬁle;afame_r /
. mi e Initia
of the higher-level value last_name
e.g. name is comprised of address
first_name, middle_initial, iflffet
and last _name state
Zip _code

Diagramming Attributes (2)

Example: Extend customers with more detailed info

Multivalued attributes are
enclosed with curly-braces

e.g. each customer can have
zero or more phone numbers

customer

cust _id
name
first_name
middle _initial
last_name
address
Street
city
state
Zip _code
{ phone _number}

Diagramming Attributes (3)

Example: Extend customers with more detailed info

Derived attributes are indicated
by a trailing set of parentheses ()

e.g. each customer has a base attribute
recording their date of birth

Also a derived attribute that reports
the customer’s current age

customer

cust _id
name
first_name
middle _initial
last_name
address
Street
city
State
Zip _code
{ phone _number}
birth_date

age ()

Representing Constraints

E-R model can represent different kinds of constraints
Mapping cardinalities
Key constraints in entity-sets
Participation constraints
Allows more accurate modeling of application’s data
requirements

Constrain design so that schema can only represent valid
information

Enforcing constraints can impact performance...
Still ought to specify them in the design!
Can always leave out constraints at implementation time

Mapping Cardinalities

Mapping cardinality represents:

“How many other entities can be associated with an entity,
via a particular relationship sete”

Example:

How many customer entities can the borrower relationship
associate with a single loan entity?

How many loans can borrower relationship associate with a
single customer entity?

Specific answer depends on what is being modeled

Also known as the cardinality ratio

Easiest to reason about with binary relationships

Mapping Cardinalities (2)

Given:
Entity-sets A and B

Binary relationship-set R
associating A and B

One-to-one mapping (1:1)

An entity in A is associated
with at most one entity in B

An entity in B is associated
with at most one entity in A

I~

-

Mapping Cardinalities (3)

One-to-many mapping (1:M)

An entity in A is associated with
zero or more entities in B

An entity in B is associated with at
most one entity in A

Many-to-one mapping (M:1)
Opposite of one-to-many

An entity in A is associated with at
most one entity in B

An entity in B is associated with
zero or more entities in A

/
N

Mapping Cardinalities (4)

Many-to-many mapping

An entity in A is associated with
zero or more entities in B

An entity in B is associated with
zero or more entities in A

I~

\/

Mapping Cardinalities (5)

Which mapping cardinality is most appropriate for a
given relationship?
Answer depends on what you are trying to model!

Could just use many-to-many relationships everywhere, but
that would be dumb.

Goal:

Constrain the mapping cardinality to most accurately reflect
what should be allowed

Database can enforce these constraints automatically

Good schema design reduces or eliminates the possibility of
storing bad data

Example: borrower relationship

between customer and loan

One-to-one mapping:

Each customer can have only
one loan

Customers can’t share loans

(e.g. with spouse or business
partner)

One-to-many mapping:

A customer can have multiple
loans

Customers still can’t share
loans

Many-to-one mapping:

Each customer can have only
one loan

Customers can share loans
Many-to-many mapping:

A customer can have multiple
loans

Customers can share loans too
Best choice for borrower :
many-to-many mapping

Handles real-world needs!

Diagramming Cardinalities

In relationship-set diagrams:
an arrow towards an entity represents “one”

a simple line represents “many”
arrow is always towards the entity

Many-to-many mapping between customer and
loan:

access_date

customer :
CUSt_id /\ loan
name borrower loan_id
Street _address amount
city

Diagramming Cardinalities (2)

One-to-many mapping between customer and loan:

access _date

customer :
name < borrower loan_id
Street _address amount
city

Each customer can have multiple loans

A loan is owned by exactly one customer

(Actually, this is technically “at most one”. Participation
constraints will allow us to say “exactly one.”)

Diagramming Cardinalities (3)

One-to-one mapping between customer and loan:

access _date

customer :
cust _id loan
name borrower loan_id
Street _address amount
city

Each customer can have only one loan

A loan is owned by exactly one customer

