
DATABASE SCHEMA DESIGN
ENTITY-RELATIONSHIP MODEL
CS121: Relational Databases
Fall 2018 – Lecture 14

Designing Database Applications

¨ Database applications are large and complex
¨ A few of the many design areas:

¤ Database schema (physical/logical/view)
¤ Programs that access and update data
¤ Security constraints for data access

¨ Also requires familiarity with the problem domain
¤ Domain experts must help drive requirements

2

General Approach

¨ Collect user requirements
¤ Information that needs to be represented
¤ Operations to perform on that information
¤ Several techniques for representing this info, e.g. UML

¨ Develop a conceptual schema of the database
¤ A high-level representation of the database’s structure and

constraints
n Physical and logical design issues are ignored at this stage

¤ Follows a specific data model
¤ Often represented graphically

3

Conceptual Schema

¨ Also need to create a specification of functional
requirements
¤ “What operations will be performed against the data?”
¤ Updating data, adding data, deleting data, …

¨ Designer can use functional requirements to verify the
conceptual schema
¤ Is each operation possible?
¤ How complicated or involved is it?
¤ Performance or scalability concerns?

4

Implementation Phases

¨ Once conceptual schema and functional requirements
are verified:
¤ Convert conceptual schema into an implementation data

model
¤ Want to have a simple mapping from conceptual model to

implementation model

¨ Finally: any necessary physical design
¤ Not always present!
¤ Smaller applications have few physical design concerns
¤ Larger systems usually need additional design and tuning

(e.g. indexes, disk-level partitioning of data)

5

Importance of Design Phase

¨ Not all changes have the same impact!
¨ Physical-level changes have the least impact

¤ (Thanks, relational model!)
¤ Typically affect performance, scalability, reliability
¤ Little to no change in functionality

¨ Logical-level changes are typically much bigger
¤ Affects how to interact with the data…
¤ Also affects what is even possible to do with the data

¨ Very important to spend time up front designing the
database schema

6

Design Decisions

¨ Many different ways to represent data
¨ Must avoid two major problems:

¤ Unnecessary redundancy
n Redundant information wastes space
n Greater potential for inconsistency!
n Ideally: each fact appears in exactly one place

¤ Incomplete representation
n Schema must be able to fully represent all details and

relationships required by the application

7

More Design Decisions

¨ Even with correct design, usually many other
concerns
¤ How easy/hard is it to access useful information?

(e.g. reporting or summary info)
¤ How hard is it to update the system?
¤ Performance considerations?
¤ Scalability considerations?

¨ Schema design requires a good balance between
aesthetic and practical concerns
¤ Frequently need to make compromises between

conflicting design principles

8

The Entity-Relationship Model

¨ A very common model for schema design
¤ Also written as “E-R model”

¨ Allows for specification of complex schemas in
graphical form

¨ Basic concepts are simple, but can also represent very
sophisticated abstractions
¤ e.g. type hierarchies

¨ Can be mapped very easily to the relational model!
¤ Simplifies implementation phase
¤ Mapping process can be automated by design tools

10

Entities and Entity-Sets

¨ An entity is any “thing” that can be uniquely
represented

n e.g. a product, an employee, a software defect

¤ Each entity has a set of attributes
¤ Entities are uniquely identified by some set of attributes

¨ An entity-set is a named collection of entities of the
same type, with the same attributes
¤ Can have multiple entity-sets with same entity type,

representing different (possibly overlapping) sets

11

Entities and Entity-Sets (2)

¨ An entity has a set of attributes
¤ Each attribute has a name and domain
¤ Each attribute also has a corresponding value

¨ Entity-sets also specify a set of attributes
¤ Every entity in the entity-set has the same set of

attributes
¤ Every entity in the entity-set has its own value for each

attribute

12

Diagramming an Entity-Set

Example: a customer entity-set
¨ Attributes:

¤ cust_id
¤ name
¤ street_address
¤ city

¨ Entity-set is denoted by a box
¨ Name of entity-set is given in the top part of box
¨ Attributes are listed in the lower part of the box

customer
cust_id
name
street_address
city

13

Relationships

¨ A relationship is an association between two or more
entities
¤ e.g. a bank loan, and the customer who owns it

¨ A relationship-set is a named collection of
relationships of the same type
¤ i.e. involving the same entities

¨ Formally, a relationship-set is a mathematical relation
involving n entity-sets, n ≥ 2
¤ E1, E2, …, En are entity sets; e1, e2, … are entities in E1,
E2,…

¤ A relationship set R is a subset of:
{ (e1, e2, …, en) | e1 Î E1, e2 Î E2, …, en Î En }

¤ (e1, e2, …, en) is a specific relationship in R

14

Relationships (2)

¨ Entity-sets participate in relationship-sets
¤ Specific entities participate in a relationship instance

¨ Example: bank loans
¤ customer and loan are entity-sets

(555-55-5555, Jackson, Woodside) is a customer entity
(L-14, 1500) is a loan entity

¤ borrower is a relationship-set
n customer and loan participate in borrower
n borrower contains a relationship instance that associates customer

“Jackson” and loan “L-14”

15

Relationships and Roles

¨ An entity’s role in a relationship is the function that the
entity fills
Example: a purchase relationship between a product
and a customer
¤ the product’s role is that it was purchased
¤ the customer did the purchasing

¨ Roles are usually obvious, and therefore unspecified
¤ Entities participating in relationships are distinct…
¤ Names clearly indicate the roles of various entities…
¤ In these cases, roles are left unstated.

16

Relationships and Roles (2)

¨ Sometimes the roles of entities are not obvious
¤ Situations where entity-sets in a relationship-set are not

distinct
Example: a relationship-set named works_for,

specifying employee/manager assignments
¤ Relationship involves two entities, and both are employee

entities
¨ Roles are given names to distinguish entities

¤ The relationship is a set of entities ordered by role:
(manager, worker)

¤ First entity’s role is named manager
¤ Second entity’s role is named worker

17

Relationships and Attributes

¨ Relationships can also have attributes!
¤ Called descriptive attributes
¤ They describe a particular relationship
¤ They do not identify the relationship!

¨ Example:
¤ The relationship between a software defect and an employee can

have a date_assigned attribute

¨ Note: this distinction between entity attributes and
relationship attributes is not made by relational model
¤ Entity-relationship model is a higher level of abstraction than

the relational model

18

Relationships and Attributes (2)

¨ Specific relationships are identified only by the
participating entities
¤ …not by any relationship attributes!
¤ Different relationships are allowed to have the same value for a

descriptive attribute
¤ (This is why entities in an entity-set must be uniquely identifiable.)

¨ Given:
¤ Entity-sets A and B, both participating in a relationship-set R

¨ Specific entities a Î A and b Î B can only have one
relationship instance in R
¤ Otherwise, we would require more than just the participating

entities to uniquely identify relationships

19

Degree of Relationship Set

¨ Most relationships in a schema are binary
¤ Two entities are involved in the relationship

¨ Sometimes there are ternary relationships
¤ Three entities are involved
¤ Far less common, but still useful at times

¨ The number of entity-sets that participate in a
relationship-set is called its degree
¤ Binary relationship: degree = 2
¤ Ternary relationship: degree = 3

20

Diagramming a Relationship-Set

Example: the borrower relationship-set between the
customer and loan entity-sets

¨ Relationship-set is a diamond
¤ Connected to participating entity-sets by solid lines

¨ Relationship-set can have descriptive attributes
¤ Listed in another box, connected with a dotted-line

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

21

Attribute Structure

¨ Each attribute has a domain or value set
¤ Values come from that domain or value set

¨ Simple attributes are atomic – they have no subparts
¤ e.g. amount attribute is a single numeric value

¨ Composite attributes have subparts
¤ Can refer to composite attribute as a whole
¤ Can also refer to subparts individually
¤ e.g. address attribute, composed of street, city, state,
postal_code attributes

22

Attribute Cardinality

¨ Single-valued attributes only store one value
¤ e.g. a customer’s cust_id only has one value

¨ Multi-valued attributes store zero or more values
¤ e.g. a customer can have multiple phone_number values
¤ A multi-valued attribute stores a set of values, not a multiset
¤ Different customer entities can have different sets of phone

numbers
¤ Lower and upper bounds can be specified too

n Can set upper bound on phone_number to 2

23

Attribute Source

¨ Base attributes (aka source attributes) are stored in
the database
¤ e.g. the birth_date of a customer entity

¨ Derived attributes are computed from other
attributes
¤ e.g. the age of a customer entity would be computed

from their birth_date

24

Diagramming Attributes

¨ Example: Extend customers with more detailed info

¨ Composite attributes are shown
as a hierarchy of values
¤ Indented values are components

of the higher-level value
¤ e.g. name is comprised of
first_name, middle_initial,
and last_name

customer
cust_id
name
first_name
middle_initial
last_name

address
street
city
state
zip_code

25

Diagramming Attributes (2)

¨ Example: Extend customers with more detailed info

¨ Multivalued attributes are
enclosed with curly-braces
¤ e.g. each customer can have

zero or more phone numbers

customer
cust_id
name
first_name
middle_initial
last_name

address
street
city
state
zip_code

{ phone_number }

26

Diagramming Attributes (3)

¨ Example: Extend customers with more detailed info

¨ Derived attributes are indicated
by a trailing set of parentheses ()
¤ e.g. each customer has a base attribute

recording their date of birth
¤ Also a derived attribute that reports

the customer’s current age

customer
cust_id
name
first_name
middle_initial
last_name

address
street
city
state
zip_code

{ phone_number }
birth_date
age ()

27

Representing Constraints

¨ E-R model can represent different kinds of constraints
¤ Mapping cardinalities
¤ Key constraints in entity-sets
¤ Participation constraints

¨ Allows more accurate modeling of application’s data
requirements
¤ Constrain design so that schema can only represent valid

information
¨ Enforcing constraints can impact performance…

¤ Still ought to specify them in the design!
¤ Can always leave out constraints at implementation time

28

Mapping Cardinalities

¨ Mapping cardinality represents:
“How many other entities can be associated with an entity,
via a particular relationship set?”

¨ Example:
¤ How many customer entities can the borrower relationship

associate with a single loan entity?
¤ How many loans can borrower relationship associate with a

single customer entity?
¤ Specific answer depends on what is being modeled

¨ Also known as the cardinality ratio
¨ Easiest to reason about with binary relationships

29

Mapping Cardinalities (2)

Given:
¨ Entity-sets A and B
¨ Binary relationship-set R

associating A and B

One-to-one mapping (1:1)
¨ An entity in A is associated

with at most one entity in B
¨ An entity in B is associated

with at most one entity in A

A

a1

a2

a3

a4

B

b1

b2

b4

b3

30

Mapping Cardinalities (3)

One-to-many mapping (1:M)
¨ An entity in A is associated with

zero or more entities in B
¨ An entity in B is associated with at

most one entity in A

Many-to-one mapping (M:1)
¨ Opposite of one-to-many
¨ An entity in A is associated with at

most one entity in B
¨ An entity in B is associated with

zero or more entities in A

A

a1

a2

a3

B

b1

b2

b4

b5

b3

31

Mapping Cardinalities (4)

Many-to-many mapping
¨ An entity in A is associated with

zero or more entities in B

¨ An entity in B is associated with
zero or more entities in A

B

b1

b2

b4

b5

b3

A

a1

a2

a3

a4

a5

32

Mapping Cardinalities (5)

¨ Which mapping cardinality is most appropriate for a
given relationship?
¤ Answer depends on what you are trying to model!
¤ Could just use many-to-many relationships everywhere, but

that would be dumb.

¨ Goal:
¤ Constrain the mapping cardinality to most accurately reflect

what should be allowed
¤ Database can enforce these constraints automatically
¤ Good schema design reduces or eliminates the possibility of

storing bad data

33

Example: borrower relationship
between customer and loan

One-to-one mapping:
¤ Each customer can have only

one loan

¤ Customers can’t share loans
(e.g. with spouse or business

partner)

One-to-many mapping:
¤ A customer can have multiple

loans

¤ Customers still can’t share
loans

Many-to-one mapping:
¤ Each customer can have only

one loan

¤ Customers can share loans

Many-to-many mapping:
¤ A customer can have multiple

loans

¤ Customers can share loans too

Best choice for borrower :
many-to-many mapping
Handles real-world needs!

34

Diagramming Cardinalities

¨ In relationship-set diagrams:
¤ an arrow towards an entity represents “one”
¤ a simple line represents “many”
¤ arrow is always towards the entity

¨ Many-to-many mapping between customer and
loan:

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

35

Diagramming Cardinalities (2)

¨ One-to-many mapping between customer and loan:

¤ Each customer can have multiple loans
¤ A loan is owned by exactly one customer

n (Actually, this is technically “at most one”. Participation
constraints will allow us to say “exactly one.”)

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

36

Diagramming Cardinalities (3)

¨ One-to-one mapping between customer and loan:

¤ Each customer can have only one loan
¤ A loan is owned by exactly one customer

customer
cust_id
name
street_address
city

loan
loan_id
amount

borrower

access_date

37

