
CS121 MIDTERM REVIEW
CS121: Relational Databases
Fall 2018 – Lecture 13

Before We Start…
2

Midterm Overview

¨ ? hours, multiple sittings
¨ Open book, open notes, open lecture slides
¨ No collaboration
¨ Possible Topics:

¤ Basically, everything you’ve seen on homework assignments
to this point

¤ Relational model
n relations, keys, relational algebra operations (queries, modifications)

¤ SQL DDL commands
n CREATE TABLE, CREATE VIEW, integrity constraints, etc.
n Altering existing database schemas
n Indexes

3

Midterm Overview (2)

¨ Possible Topics (cont):
¤ SQL DML commands

n SELECT, INSERT, UPDATE, DELETE
n Grouping and aggregation, subqueries, etc.
n Aggregates of aggregates J
n Translation to relational algebra, performance considerations, etc.

¤ Procedural SQL
n User-defined functions (UDFs)
n Stored procedures
n Triggers
n Cursors

4

Midterm Overview (2)

¨ You should use a MySQL database for the SQL
parts of the exam
¤ e.g. make sure your DDL and DML syntax is correct,

check schema-alteration steps, verify that UDFs work

¨ WARNING: Don’t let it become a time-sink!
¤ I won’t necessarily give you actual data for problems
¤ Don’t waste time making up data just to test your SQL

5

Midterm Overview (3)

¨ Midterm posted online around Friday, November 9
¨ Due Friday, November 16 at 5:00PM

(the usual time)

¨ No homework to do next week

6

Assignments and Solution Sets

¨ Some assignments may not be graded in time for
the midterm (e.g. HW3, HW4)

¨ HW1-HW4 solution sets will be on Moodle by the
time of the midterm

7

Relational Model

¨ Be familiar with the relational model:
¤ What’s a relation? What’s a relation schema? What’s

a tuple? etc.
¨ Remember, relations are different from SQL tables

in a very important way:
¤ Relations are sets of tuples. SQL tables are multisets of

tuples.

8

Keys in the Relational Model

¨ Be familiar with the different kinds of keys
¤ Keys uniquely identify tuples within a relation

¨ Superkey
¤ Any set of attributes that uniquely identifies a tuple
¤ If a set of attributes K is a superkey, then so is any superset

of K
¨ Candidate key

¤ A minimal superkey
¤ If any attribute is removed, no longer a superkey

¨ Primary key
¤ A particular candidate key, chosen as the primary means of

referring to tuples

9

Keys and Constraints

¨ Keys constrain the set of tuples that can appear in a
relation
¤ In a relation r with a candidate key K, no two tuples can

have the same values for K

¨ Can also have foreign keys
¤ One relation contains the key attributes of another relation
¤ Referencing relation has a foreign key
¤ Referenced relation has a primary (or candidate) key
¤ Referencing relation can only contain values of foreign key

that also appear in referenced relation
¤ Called referential integrity

10

Foreign Key Example

¨ Bank example:
account(account_number, branch_name, balance)
depositor(customer_name, account_number)

¨ depositor is the referencing relation
¤ account_number is a foreign-key to account

¨ account is the referenced relation

11

A Note on Notation

¨ Depositor relation:
¤ depositor(customer_name, account_number)

¨ In the relational model:
¤ Every (customer_name, account_number) pair in depositor is unique

¨ When translating to SQL:
¤ depositor table could be a multiset…

¤ Need to ensure that SQL table is actually a set, not a multiset
¤ PRIMARY KEY (customer_name, account_number) after

all columns are declared

12

Referential Integrity in Relational Model

¨ In the relational model, you must pay attention to
referential integrity constraints
¤ Make sure to perform modifications in an order that

maintains referential integrity
¨ Example: Remove customer “Jones” from bank

¤ Customer name appears in customer, depositor, and
borrower relations

¤ Which relations reference which?
n depositor references customer
n borrower references customer

¤ Remove Jones records from depositor and borrower first
¤ Then remove Jones records from customer

13

Relational Algebra Operations

¨ Six fundamental operations:
s select operation
P project operation
∪ set-union operation
– set-difference operation
´ Cartesian product operation
r rename operation

¤ Operations take one or two relations as input
¤ Each produces another relation as output

14

Additional Relational Operations

¨ Several additional operations, defined in terms of
fundamental operations:
∩ set-intersection

natural join (also theta-join q)
÷ division
¬ assignment

¨ Extended relational operations:
P generalized project operation
G grouping and aggregation

left outer join, right outer join, full outer join

15

Join Operations

¨ Be familiar with different join operations in relational
algebra

¨ Cartesian product r ´ s generates every possible pair
of rows from r and s

¨ Summary of other
join operations: attr1 attr3

b
c
d

s2
s3
s4

r = s =

r sr s r s r s

attr1 attr2
a
b
c

r1
r2
r3

attr1 attr2 attr3
b
c

r2
r3

s2
s3

attr1 attr2 attr3
a
b
c

r1
r2
r3

null
s2
s3

attr1 attr2 attr3
b
c
d

r2
r3

null

s2
s3
s4

attr1 attr2 attr3
a
b
c
d

r1
r2
r3

null

null
s2
s3
s4

16

Rename Operation

¨ Mainly used when joining a relation to itself
¤ Need to rename one instance of the relation to avoid

ambiguities
¨ Remember you can specify names with both P and G

¤ Can rename attributes
¤ Can assign a name to computed results
¤ Naming computed results in P or G is shorter than including

an extra r operation
¨ Use r when you are only renaming things

¤ Don’t use P or G just to rename something
¤ Also, r doesn’t create a new relation-variable!

Assignment ← does this.

17

Examples

¨ Schema for an auto insurance database:
car(license, vin, make, model, year)

n vin is also a candidate key, but not the primary key
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

¨ Find names of all customers living in Los Angeles or
New York.
Pname(scity=“Los Angeles” ∨ city=“New York”(customer))
¤ Select predicate can refer to attributes, constants, or

arithmetic expressions using attributes
¤ Conditions combined with ∧ and ∨

18

Examples (2)

¨ Schema:
car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

¨ Find customer name, street, and city of all Toyota
owners
¤ Need to join customer, owner, car relations
¤ Could use Cartesian product, select, etc.
¤ Or, use natural join operation:
Pname,street,city(smake=“Toyota”(customer owner car))

19

Examples (3)

¨ Schema:
car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

¨ Find how many claims each customer has
¤ Don’t include customers with no claims…
¤ Simple grouping and aggregation operation
driver_idGcount(license) as num_claims(claim)
n The specific attribute that is counted is irrelevant here…

¤ Aggregate operations work on multisets by default
¤ Schema of result?

(driver_id, num_claims)

20

Examples (4)

¨ Now, include customers with no claims
¤ They should have 0 in their values
¤ Requires outer join between customer, claim
¤ “Outer” part of join symbol is towards relation whose

rows should be null-padded
¤ Want all customers, and claim records if they are there,

so “outer” part is towards customer
driver_idGcount(license) as num_claims(customer claim)

¤ Aggregate functions ignore null values

21

Selecting on Aggregate Values

¨ Grouping/aggregation op produces a relation, not
an individual scalar value
You cannot use aggregate functions in select predicates!!!

¨ To select rows based on an aggregate value:
¤ Create a grouping/aggregation query to generate the

aggregate results
n This is a relation, so…

¤ Use Cartesian product (or another appropriate join
operation) to combine rows with the relation containing
aggregated results

¤ Select out the rows that satisfy the desired constraints

22

Selecting on Aggregate Values (2)

¨ General form of grouping/aggregation:
¤ G (…)

¨ Results of aggregate functions are unnamed!
¨ This query is wrong:

¤ σ (G (…))
¤ Attribute in result does not have name F(A1)!

¨ Must assign a name to the aggregate result
¤ G (…)

¨ Then, can properly select against the result:
¤ σ (G (…))

G1, G2, … F(A1), F(A2), …

F(A1) = … G1, G2, … F(A1), F(A2), …

G1, G2, … F(A1) as V1, F(A2) as V2, …

V1 = … G1, G2, … F(A1) as V1, F(A2) as V2, …

23

An Aggregate Example

¨ Schema:

¨ Find the claim(s) with the largest amount
¤ Claims are identified by (driver_id, license, date), so just

return all attributes of the claim
¤ Use aggregation to find the maximum claim amount:

Gmax(amount) as max_amt(claim)
¤ This generates a relation! Use Cartesian product to select

the row(s) with this value.
Pdriver_id,license,date,description,amount(
samount=max_amt(claim ´ Gmax(amount) as max_amt(claim)))

car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

24

Another Aggregate Example

¨ Schema:

¨ Find the customer with the most insurance claims, along with the
number of claims

¨ This involves two levels of aggregation
¤ Step 1: generate a count of each customer’s claims
¤ Step 2: compute the maximum count from this set of results

¨ Once you have result of step 2, can reuse the result of step 1
to find the final result

¨ Common subquery: computation of how many claims each
customer has

car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

25

Another Aggregate Example (2)

¨ Use assignment operation to store temporary result
claim_counts¬ driver_idGcount(license) as num_claims(claim)
max_count¬ Gmax(num_claims) as max_claims(claim_counts)

¨ Schemas of claim_counts and max_count ?
claim_counts(driver_id, num_claims)
max_count(max_claims)

¨ Finally, select row from claim_counts with the
maximum count value
¤ Obvious here that a Cartesian product is necessary
Pdriver_id,num_claims(
snum_claims=max_claims(claim_counts ´ max_count))

26

Modifying Relations

¨ Can add rows to a relation
r¬ r ∪ { (…), (…) }
n { (…), (…) } is called a constant relation
n Individual tuple literals enclosed by parentheses ()
n Set of tuples enclosed with curly braces { }

¨ Can delete rows from a relation
r¬ r – sP(r)

¨ Can modify rows in a relation
r¬ P(r)

¤ Uses generalized project operation

27

Modifying Relations (2)

¨ Remember to include unmodified rows!
r ¬ P(sP(r)) ∪ s¬P(r)

¨ Relational algebra is not like SQL for updates!
¤ Must explicitly include unaffected rows

¨ Example:
Transfer $10,000 in assets to all Horseneck branches.
branch ¬ Pbranch_name,branch_city,assets+10000(sbranch_city=“Horseneck”(branch))

Wrong: This version throws out all branches not in Horseneck!

branch ¬ Pbranch_name,branch_city,assets+10000(sbranch_city=“Horseneck”(branch)) ∪
sbranch_city≠“Horseneck”(branch)

Correct. Non-Horseneck branches are included, unmodified.

28

Structured Query Language

¨ Some major differences between SQL and relational
algebra!

¨ Tables are like relations, but are multisets
¨ Most queries generate multisets

¤ SELECT queries produce multisets, unless they specify
SELECT DISTINCT …

¨ Some operations do eliminate duplicates!
¤ Set operations: UNION, INTERSECT, EXCEPT

n Duplicates are eliminated automatically, unless you specify UNION
ALL, INTERSECT ALL, EXCEPT ALL

29

SQL Statements

¨ SELECT is most ubiquitous
SELECT A1, A2, ... FROM r1, r2, ...
WHERE P;

¤ Equivalent to: P (sP(r1 ´ r2 ´ …))

¨ INSERT, UPDATE, DELETE all have common
aspects of SELECT
¤ All support WHERE clause, subqueries, etc.
¤ Also INSERT … SELECT statement

A1, A2, …

30

Join Alternatives

¨ FROM r1, r2
¤ Cartesian product
¤ Can specify join conditions in WHERE clause

¨ FROM r1 JOIN r2 ON (r1.a = r2.a)
¤ Most like theta-join operator: r q s = sq(r ´ s)
¤ Doesn’t eliminate any columns!

¨ FROM r1 JOIN r2 USING (a)
¤ Eliminates duplicate column a

¨ FROM r1 NATURAL JOIN r2
¤ Uses all common attributes to join r1 and r2
¤ Also eliminates all duplicate columns in result

31

Join Alternatives (2)

¨ Can specify inner/outer joins with JOIN syntax
¤ r INNER JOIN s ...
¤ r LEFT OUTER JOIN s ...
¤ r RIGHT OUTER JOIN s ...
¤ r FULL OUTER JOIN s ...

¨ Can also specify r CROSS JOIN s
¤ Cartesian product of r with s
¤ Can’t specify ON condition, USING, or NATURAL

¨ Can actually leave out INNER or OUTER
¤ OUTER is implied by LEFT/RIGHT/FULL
¤ If you just say JOIN, this is an INNER join

32

Self-Joins

¨ Sometimes helpful to do a self-join
¤ A join of a table with itself

¨ Example: employees
employee(emp_id, emp_name, salary, manager_id)

¨ Tables can contain foreign-key references to
themselves
¤ manager_id is a foreign-key reference to employee table’s
emp_id attribute

¨ Example:
¤ Write a query to retrieve the name of each employee, and

the name of each employee’s boss.
SELECT e.emp_name, b.emp_name AS boss_name
FROM employee AS e JOIN employee AS b

ON (e.manager_id = b.emp_id);

33

Subqueries

¨ Can include subqueries in FROM clause
¤ Called a derived relation
¤ Nested SELECT statement in FROM clause, given a name

and a set of attribute names
¨ Can also use subqueries in WHERE clause

¤ Can compare an attribute to a scalar subquery
n This is different from the relational algebra!

¤ Can also use set-comparison operations to test against a
subquery
n IN, NOT IN – set membership tests
n EXISTS, NOT EXISTS – empty-set tests
n ANY, SOME, ALL – comparison against a set of values

34

Scalar Subqueries

¨ Find name and city of branch with the least assets
¤ Need to generate the “least assets” value, then use

this to select the specific branch records
¨ Query:

SELECT branch_name, branch_city FROM branch
WHERE assets = (SELECT MIN(assets) FROM branch);
¤ This is a scalar subquery: one row, one column
¤ Don’t need to name MIN(assets) since it doesn’t appear

in final result, and we don’t refer to it
¨ Don’t do this:

WHERE assets=ALL (SELECT MIN(assets) FROM branch)
¤ ANY, SOME, ALL are for comparing a value to a set of values
¤ Don’t need these when comparing to a scalar subquery

35

Subqueries vs. Views

¨ Don’t create views unnecessarily
¤ Views are part of a database’s schema
¤ Every database user sees the views that are defined

¨ Views should generally expose “final results,” not
intermediate results in a larger computation
¤ Don’t use views to compute intermediate results!

¨ If you really want functionality like this, read about
the WITH clause (Book, 6th ed: §3.8.6, pg. 97)
¤ MariaDB 10.2 now supports WITH clause! Use it to simplify

complicated queries! J

36

WHERE Clause

¨ WHERE clause specifies selection predicate
¤ Can use AND, OR, NOT to combine conditions
¤ NULL values affect comparisons!

n Can’t use = NULL or <> NULL
n Never evaluates to true, regardless of other value

n Must use IS NULL or IS NOT NULL

¤ Can use BETWEEN to simplify range checks
n a >= v1 AND a <= v2
n a BETWEEN v1 AND v2

37

Grouping and Aggregation

¨ SQL supports grouping and aggregation
¨ GROUP BY specifies attributes to group on

¤ Apply aggregate functions to non-grouping columns in
SELECT clause

¤ Can filter results of grouping operation using HAVING
clause
n HAVING clause can refer to aggregate values too

¨ Difference between WHERE and HAVING ?
¤ WHERE is applied before grouping;
HAVING is applied after grouping

¤ HAVING can refer to aggregate results, too
n Unlike relational algebra, can use aggregate functions in
HAVING clause

38

Grouping: SQL, Relational Algebra

¨ Another difference between relational algebra notation
and SQL syntax

¨ Relational algebra syntax:
G (E)

¤ Grouping attributes appear only on left of G
¤ Schema of result: (G1, G2, …, F1, F2, …)

n (Remember, Fi generate unnamed results.)
¨ SQL syntax:

SELECT G1,G2,..., F1(A1),F2(A2),...
FROM r1,r2,... WHERE P
GROUP BY G1,G2,...

¤ To include group-by values in result, specify grouping
attributes in SELECT clause and in GROUP BY clause

G1,G2,…,Gn F1(A1),F2(A2),…,Fm(Am)

39

SQL Query Example

¨ Schema:
car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

¨ Find customers with more claims than the average
number of claims per customer

¨ This is an aggregate of another aggregate
¨ Each SELECT can only compute one level of

aggregation
¤ AVG(COUNT(*)) is not allowed in SQL

(or in relational algebra, so no big surprise)

42

Aggregates of Aggregates

¨ Two steps to find average number of claims
¨ Step 1:

¤ Must compute a count of claims for each customer
SELECT COUNT(*) AS num_claims
FROM claim GROUP BY driver_id

¤ Then, compute the average in a second SELECT:
SELECT AVG(num_claims)
FROM (SELECT COUNT(*) AS num_claims

FROM claim GROUP BY driver_id) AS c

¨ This generates a single result
¤ Can use it as a scalar subquery if we want.

43

Aggregates of Aggregates (2)

¨ Finally, can compute the full result:
SELECT driver_id, COUNT(*) AS num_claims
FROM claim GROUP BY driver_id

HAVING num_claims >=
(SELECT AVG(num_claims)
FROM (SELECT COUNT(*) AS num_claims

FROM claim GROUP BY driver_id) AS c);

¤ Comparison must be in HAVING clause
¨ This won’t work:

SELECT driver_id, COUNT(*) AS num_claims
FROM claim GROUP BY driver_id

HAVING num_claims >= AVG(num_claims);

¤ Tries to do two levels of aggregation in one SELECT

44

Alternative 1: Make a View

¨ Knowing each customer’s total number of claims could
be generally useful…

¨ Define a view for it:
CREATE VIEW claim_counts AS
SELECT driver_id, COUNT(*) AS num_claims
FROM claim GROUP BY driver_id;

¤ Then the query becomes:
SELECT * FROM claim_counts
WHERE num_claims >

(SELECT AVG(num_claims) FROM claim_counts)

¤ View hides one level of aggregation

45

Alternative 2: Use WITH Clause

¨ WITH is like defining a view for a single statement
¨ Using WITH:

WITH claim_counts AS (
SELECT driver_id, COUNT(*) AS num_claims
FROM claim GROUP BY name)

SELECT * FROM claim_counts
WHERE num_claims > (SELECT AVG(num_claims)

FROM claim_counts);
¤ WITH doesn’t pollute the database schema with a bunch of

random views
¤ Can specify multiple subqueries in the WITH clause, too

(see documentation for details)

46

SQL Data Definition

¨ Specify table schemas using CREATE TABLE
¤ Specify each column’s name and domain
¤ Can specify domain constraint: NOT NULL
¤ Can specify key constraints

n PRIMARY KEY
n UNIQUE (candidate keys)
n REFERENCES table (column) (foreign keys)

¤ Key constraints can go in column declaration
¤ Can also specify keys after all column decls.

¨ Be familiar with common SQL data types
¤ INTEGER, CHAR, VARCHAR, date/time types, etc.

47

DDL Example

¨ Relation schema:
car(license, vin, make, model, year)

n vin is also a candidate key

¨ CREATE TABLE statement:
CREATE TABLE car (
license CHAR(10) PRIMARY KEY,
vin CHAR(30) NOT NULL UNIQUE,
make VARCHAR(20) NOT NULL,
model VARCHAR(20) NOT NULL,
year INTEGER NOT NULL

);

48

DDL Example (2)

¨ Relation schema:
claim(driver_id, license, date, description, amount)

¨ CREATE TABLE statement:
CREATE TABLE claim (
driver_id CHAR(12),
license CHAR(10),
date TIMESTAMP,
description VARCHAR(4000) NOT NULL,
amount NUMERIC(8,2),

PRIMARY KEY (driver_id, license, date),
FOREIGN KEY driver_id REFERENCES customer,
FOREIGN KEY license REFERENCES car

);

49

Key Constraints and NULL

¨ Some key constraints automatically include
NOT NULL constraints, but not all do.

¨ PRIMARY KEY constraints
¤ Disallows NULL values

¨ UNIQUE constraints
¤ Allows NULL values, unless you specify NOT NULL

¨ FOREIGN KEY constraints
¤ Allows NULL values , unless you specify NOT NULL

¨ Understand how NULL values affect UNIQUE and
FOREIGN KEY constraints that allow NULLs

50

Referential Integrity Constraints

¨ Unlike relational algebra, SQL DBs automatically
enforce referential integrity constraints for you
¤ You still need to perform operations in the correct order,

though

¨ Same example as before:
¤ Remove customer “Jones” from the bank database
¤ DBMS will ensure that referential integrity is enforced, but

you still have to delete rows from depositor and
borrower tables first!
DELETE FROM depositor WHERE customer_name = 'Jones'
DELETE FROM borrower WHERE customer_name = 'Jones'
DELETE FROM customer WHERE customer_name = 'Jones'

51

Midterm Details

¨ No homework to do next week

¨ Good luck! J

52

