CS121 MIDTERM REVIEW

Before We Start...
=2

Y m,QVR'A VE,§) Ljf\}

OCOREFA I'E
COAYED RAISIN

.\‘l‘k Chocolate Containe Veget
Cocoa Solids20% Mir

lng‘edia\u Milk Chocolate ($440) tSugas
Butter, Coota)\[ass, Butter Oil, Lactose

cd I An Environment Where Glutén, Nui$& Sesame Seeds May Be Present

- 200ge
BEST BEFORE-END
AUG 2007 8317T4A

Midterm Overview

2 hours, multiple sittings
Open book, open notes, open lecture slides
No collaboration

Possible Topics:
Basically, everything you've seen on homework assignments
to this point

Relational model
relations, keys, relational algebra operations (queries, modifications)
SQL DDL commands
CREATE TABLE, CREATE VIEW, integrity constraints, etc.
Altering existing database schemas
Indexes

Midterm Overview (2)

Possible Topics (cont):

SQL DML commands
SELECT, INSERT, UPDATE, DELETE
Grouping and aggregation, subqueries, efc.
Aggregates of aggregates ©
Translation to relational algebra, performance considerations, etc.

Procedural SQL
User-defined functions (UDFs)
Stored procedures
Triggers
Cursors

Midterm Overview (2)

You should use a MySQL database for the SQL
parts of the exam

e.g. make sure your DDL and DML syntax is correct,
check schema-alteration steps, verify that UDFs work

WARNING: Don’t let it become a time-sink!

| won’t necessarily give you actual data for problems

Don’t waste time making up data just to test your SQL

Midterm Overview (3)

Midterm posted online around Friday, November 9

Due Friday, November 16 at 5:00PM
(the usual time)

No homework to do next week

Assignments and Solution Sets

Some assignments may not be graded in time for
the midterm (e.g. HW3, HW4)

HW1-HW4 solution sets will be on Moodle by the
time of the midterm

Relational Model

Be familiar with the relational model:

What'’s a relation? What'’s a relation schema2 What's
a tuple¢ etc.

Remember, relations are different from SQL tables
in a very important way:

Relations are sets of tuples. SQL tables are multisets of
tuples.

Keys in the Relational Model

Be familiar with the different kinds of keys
Keys uniquely identify tuples within a relation

Superkey
Any set of attributes that uniquely identifies a tuple
Ifquse’r of attributes K is a superkey, then so is any superset
o
Candidate key
A minimal superkey
If any attribute is removed, no longer a superkey
Primary key

A particular candidate key, chosen as the primary means of
referring to tuples

Keys and Constraints

Keys constrain the set of tuples that can appear in a
relation

In a relation r with a candidate key K, no two tuples can
have the same values for K

Can also have foreign keys
One relation contains the key attributes of another relation
Referencing relation has a foreign key
Referenced relation has a primary (or candidate) key

Referencing relation can only contain values of foreign key
that also appear in referenced relation

Called referential integrity

Foreign Key Example

Bank example:

account(account _number, branch_name, balance)

depositor(customer_name, account_number)

depositor is the referencing relation

account_number is a foreign-key to account

account is the referenced relation

A Note on Notation

Depositor relation:
depositor(customer_name, account_number)
In the relational model:

Every (customer_name, account_number) pair in depositor is unique

When translating to SQL:
depositor table could be a multiset...

Need to ensure that SQL table is actually a set, not a multiset

PRIMARY KEY (customer name, account number) after
all columns are declared

Referential Integrity in Relational Model

In the relational model, you must pay attention to
referential integrity constraints

Make sure to perform modifications in an order that
maintains referential integrity

Example: Remove customer “Jones” from bank

Customer name appears in customer, depositor, and
borrower relations

Which relations reference which?
depositor references customer
borrower references customer

Remove Jones records from depositor and borrower first
Then remove Jones records from customer

Relational Algebra Operations

Six fundamental operations:

] select operation
I1 project operation
U set-union operation

— set-difference operation
X Cartesian product operation

p rename operation
Operations take one or two relations as input

Each produces another relation as output

Additional Relational Operations

Several additional operations, defined in terms of
fundamental operations:

N set-intersection

X natural join (also theta-join X)
= division

< assignment

Extended relational operations:
I1 generalized project operation
G grouping and aggregation
™ XC IXC left outer join, right outer join, full outer join

Join Operations

Be familiar with different join operations in relational
algebra

Cartesian product r X s generates every possible pair
of rows from r and s

Summary of other

|oIN Operq'flon& r= | attr1 | attr2 s = | attr1 | attr3
a r1 b s2
b r2 C s3
C r3 d s4
rx's r X s rxts r XCs
attr1 | attr2 | attr3 attr1 | attr2 | attr3 attr1 | attr2 | attr3 attr1 | attr2 | attr3
b r2 s2 a r1 null b r2 s2 a r1 null
C r3 s3 b r2 s2 C r3 s3 b r2 s2
C r3 s3 d null s4 C r3 s3
d null s4

Rename Operation

Mainly used when joining a relation to itself
Need to rename one instance of the relation to avoid
ambiguities

Remember you can specify names with both IT and G
Can rename attributes
Can assign a name to computed results

Naming computed results in 11 or g is shorter than including
an extra p operation

Use p when you are only renaming things
Don’t use I or G just to rename something

Also, p doesn’t create a new relation-variablel
Assignment <— does this.

Examples

Schema for an avuto insurance database:

car(license, vin, make, model, year)
vin is also a candidate key, but not the primary key

customer(driver id, name, street, city)

owner(license, driver_id)
claim(driver_id, license, date, description, amount)

Find names of all customers living in Los Angeles or
New York.

I1

name(Gcify:“Los Angeles” V city="New York”(CUSfomer))

Select predicate can refer to attributes, constants, or
arithmetic expressions using attributes

Conditions combined with A and V

Examples (2)

Schema:
car(license, vin, make, model, year)
customer(driver id, name, street, city)

owner(license, driver_id)
claim(driver_id, license, date, description, amount)
Find customer name, street, and city of all Toyota
owners
Need to join customer, owner, car relations
Could use Cartesian product, select, etc.
Or, use natural join operation:
Il »(customer X owner X car))

name,street,ci fy(Gmc:ke:“Toyo’rOI

Examples (3)

Schema:

car(license, vin, make, model, year)
customer(driver_id, name, street, city)
owner (license, driver_id)

claim(driver_id, license, date, description, amount)

Find how many claims each customer has
Don’t include customers with no claims...
Simple grouping and aggregation operation
driver_id I count(license) as num_claims(C’C'i m)

The specific attribute that is counted is irrelevant here...
Aggregate operations work on multisets by default

Schema of result?

(driver_id, num_claims)

Examples (4)

Now, include customers with no claims
They should have O in their values
Requires outer join between customer, claim

“Outer” part of join symbol is towards relation whose
rows should be null-padded

Want all customers, and claim records if they are there,
so “outer” part is towards customer

driver_id ¥ count(license) as num_claims(CUSfomer N CId’m)

Aggregate functions ignore null values

Selecting on Aggregate Values

Grouping/aggrega’rion op produces a relation, not
an individual scalar value

You cannot use aggregate functions in select predicates!!!

To select rows based on an aggregate value:

Create a grouping/aggregation query to generate the
aggregate results

This is a relation, so...
Use Cartesian product (or another appropriate join

operation) to combine rows with the relation containing
aggregated results

Select out the rows that satisfy the desired constraints

Selecting on Aggregate Values (2)

General form of grouping/aggregation:

Go, Gar . G, FlAg), .. L 00)
Results of aggregate functions are unnamed!

This query is wrong:

Oran=..0c. G, ...gF(A1), FAy, . (eee))
Attribute in result does not have name F(A;)!

Must assign a name to the aggregate result

G, Gy, ...GF(A1) as V,, F(A,) as V,, (‘ *)
Then, can properly select against the result:

Oy, = ...(Gy, Gy, ...GF(A]) as V;, F(A,) as V,, ...("-))

An Aggregate Example

Schema: car(license, vin, make, model, year)
customer(driver id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

Find the claim(s) with the largest amount

Claims are identified by (driver_id, license, date), so just
return all attributes of the claim

Use aggregation to find the maximum claim amount:

Gmax(cmounf) as mc:x_amf(CIC’im)
This generates a relation! Use Cartesian product to select
the row(s) with this value.

1_Idriver_id,license,clc:r‘e,descripﬁon,c:mounz‘(
cTamoum‘ch:x_amf(Clalm X qux(amounf) as mcx_amf(CIC”m)))

Another Aggregate Example

Schema: car(license, vin, make, model, year)
customer(driver id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

Find the customer with the most insurance claims, along with the
number of claims

This involves two levels of aggregation
Step 1: generate a count of each customer’s claims
Step 2: compute the maximum count from this set of results

Once you have result of step 2, can reuse the result of step 1
to find the final result

Common subquery: computation of how many claims each
customer has

Another Aggregate Example (2)

Use assignment operation to store temporary result

CIOIm_COUI’lfS < driver_id6couni(license) as num_clcims(CIa’m)

max_count <— G,y (claim_counts)

num_claims) as max_claims

Schemas of claim counts and max_count 2
claim_counts(driver_id, num_claims)
max_count{max_claims)

Finally, select row from claim_counts with the
maximum count value

Obvious here that a Cartesian product is necessary

IT

driver_id,num_claims(

] (claim_counts X max_count))

num_claims=max_claims

Modifying Relations

Can add rows to a relation
rerU{(..), ()}

{(...), (...) } is called a constant relation

Individual tuple literals enclosed by parentheses ()
Set of tuples enclosed with curly braces { }

Can delete rows from a relation
r <—r — op(r)

Can modify rows in a relation
r < 11(r)

Uses generalized project operation

Modifying Relations (2)

Remember to include unmodified rows!
r <= 1l(op(r)) U o-p(r)
Relational algebra is not like SQL for updates!

Must explicitly include unaffected rows

Example:
Transfer $10,000 in assets to all Horseneck branches.

brchh < 1_Ibrcmch_nc:me,brcmch_ciz‘y,asse1‘s+1 OOOO(Gbranch_cifyI“Horseneck”(brchh))
Wrong: This version throws out all branches not in Horseneck!

branch < 1_Ibrcmch_ncrme,brcmch_ciz‘y,asse1‘s+1OOOO(Gbrcmch_cifyI“Horseneck”(br’anCh)) U
cYbr<:|nch_city7ﬁ“Horseneck”(br’anclﬂ')

Correct. Non-Horseneck branches are included, unmodified.

Structured Query Language

Some major differences between SQL and relational

algebral
Tables are like relations, but are multisets

Most queries generate multisets
SELECT queries produce multisets, unless they specify
SELECT DISTINCT ...

Some operations do eliminate duplicates!
Set operations: UNION, INTERSECT, EXCEPT

Duplicates are eliminated automatically, unless you specify UNION
ALL, INTERSECT ALL, EXCEPT ALL

SQL Statements

SELECT is most ubiquitous

SELECT A,, A,, ... FROM r,, r,,
WHERE P;

Equivalent to: 11, , (op(ry X ry X ...))

INSERT, UPDATE, DELETE all have common
aspects of SELECT

All support WHERE clause, subqueries, etc.
Also INSERT ... SELECT statement

Join Alternatives

FROM rl, r2

Cartesian product
Can specify join conditions in WHERE clause

FROM rl JOIN r2 ON (rl.a = r2.a)
Most like theta-join operator: rixg s = Gy(r X s)
Doesn’t eliminate any columns!

FROM rl JOIN r2 USING (a)

Eliminates duplicate column a

FROM rl NATURAL JOIN r2
Uses all common attributes to join *l and r2
Also eliminates all duplicate columns in result

Join Alternatives (2)

Can specify inner/outer joins with JOIN syntax
r INNER JOIN s
r LEFT OUTER JOIN s
r RIGHT OUTER JOIN s
r FULL OUTER JOIN s

Can also specify r CROSS JOIN s

Cartesian product of r with s
Can’t specify ON condition, USING, or NATURAL

Can actually leave out INNER or OUTER
OUTER is implied by LEFT/RIGHT /FULL
If you just say JOIN, this is an INNER join

Self-Joins

Sometimes helpful to do a self-join
A join of a table with itself

Example: employees
employee(emp id, emp_name, salary, manager_id)
Tables can contain foreign-key references to

themselves

manager_id is a foreign-key reference to employee table’s
emp_id attribute

Example:

Write a query to retrieve the name of each employee, and
the name of each employee’s boss.
SELECT e.emp name, b.emp name AS boss name
FROM employee AS e JOIN employee AS b
ON (e.manager id = b.emp id);

Subqueries

Can include subqueries in FROM clause

Called a derived relation

Nested SELECT statement in FROM clause, given a name
and a set of attribute names

Can also use subqueries in WHERE clause

Can compare an attribute to a scalar subquery

This is different from the relational algebra!
Can also use set-comparison operations to test against a
subquery

IN, NOT IN - set membership tests
EXISTS, NOT EXISTS — empty-set tests
ANY, SOME, ALL — comparison against a set of values

Scalar Subqueries

Find name and city of branch with the least assets

Need to generate the “least assets” value, then use
this to select the specific branch records
Query:
SELECT branch name, branch city FROM branch
WHERE assets = (SELECT MIN (assets) FROM branch) ;

This is a scalar subquery: one row, one column

Don’t need to name MIN (assets) since it doesn’t appear
in final result, and we don’t refer to it

Don’t do this:
WHERE assets=ALL (SELECT MIN (assets) FROM branch)
ANY, SOME, ALL are for comparing a value to a set of values

Don’t need these when comparing to a scalar subquery

Subqueries vs. Views

Don’t create views unnecessarily
Views are part of a database’s schema

Every database user sees the views that are defined

Views should generally expose “final results,” not
intermediate results in a larger computation

Don’t use views to compute intermediate results!

If you really want functionality like this, read about
the WITH clause (Book, 6™ ed: §3.8.4, pg. 97)

MariaDB 10.2 now supports WITH clause! Use it to simplify
complicated queries! ©

WHERE Clause

WHERE clause specifies selection predicate
Can use AND, OR, NOT to combine conditions

NULL values affect comparisons!
Can’t use = NULL or <> NULL
Never evaluates to true, regardless of other value
Must use IS NULL or IS NOT NULL
Can use BETWEEN to simplify range checks
a > vl AND a <= v2
a BETWEEN vl AND v2

Grouping and Aggregation

SQL supports grouping and aggregation
GROUP BY specifies attributes to group on

Apply aggregate functions to non-grouping columns in
SELECT clause

Can filter results of grouping operation using HAVING
clause

HAVING clause can refer to aggregate values too

Difference between WHERE and HAVING 2

WHERE is applied before grouping;
HAVING is applied after grouping

HAVING can refer to aggregate results, too

Unlike relational algebra, can use aggregate functions in
HAVING clause

Grouping: SQL, Relational Algebra

Another difference between relational algebra notation
and SQL syntax

Relational algebra syntax:

G .Goree G TF (AN Fol APl A (E)

Grouping attributes appear only on left of G
Schema of result: (G, G,, ..., F;, Fo, ...)

(Remember, F; generate unnamed results.)

SQL syntax:
SELECT G;,G,, ..., Fi(4;)) ,F,(A4,),...
FROM r,,r,,... WHERE P

GROUP BY G,,G,, ...

To include group-by values in result, specify grouping
attributes in SELECT clause and in GROUP BY clause

SQL Query Example

Schema:
car(license, vin, make, model, year)

customer(driver _id, name, street, city)
owner(license, driver_id)
claim(driver_id, license, date, description, amount)

Find customers with more claims than the average
number of claims per customer

This is an aggregate of another aggregate

Each SELECT can only compute one level of
aggregation

AVG (COUNT (*)) is not allowed in SQL
(or in relational algebra, so no big surprise)

Aggregates of Aggregates

Two steps to find average number of claims
Step 1:

Must compute a count of claims for each customer

SELECT COUNT (*) AS num claims
FROM claim GROUP BY driver id

Then, compute the average in a second SELECT:

SELECT AVG(num claims)
FROM (SELECT COUNT (*) AS num claims
FROM claim GROUP BY driver id) AS c

This generates a single result

Can use it as a scalar subquery if we want.

Aggregates of Aggregates (2)

Finally, can compute the full result:
SELECT driver id, COUNT (*) AS num claims
FROM claim GROUP BY driver id
HAVING num claims >=
(SELECT AVG (num_claims)
FROM (SELECT COUNT (*) AS num claims
FROM claim GROUP BY driver id) AS c);

Comparison must be in HAVING clause

This won’t work:

SELECT driver id, COUNT (*) AS num claims
FROM claim GROUP BY driver id
HAVING num claims >= AVG(num claims);

Tries to do two levels of aggregation in one SELECT

Alternative 1: Make a View

Knowing each customer’s total number of claims could
be generally useful...

Define a view for it:
CREATE VIEW claim counts AS
SELECT driver id, COUNT(*) AS num claims
FROM claim GROUP BY driver id;

Then the query becomes:
SELECT * FROM claim counts
WHERE num claims >
(SELECT AVG (num claims) FROM claim counts)

View hides one level of aggregation

Alternative 2: Use WITH Clause

WITH is like defining a view for a single statement

Using WITH:

WITH claim counts AS (

SELECT driver id, COUNT(*) AS num claims
FROM claim GROUP BY name)
SELECT * FROM claim counts
WHERE num claims > (SELECT AVG(num claims)
FROM claim counts);
WITH doesn’t pollute the database schema with a bunch of
random views

Can specify multiple subqueries in the WITH clause, too
(see documentation for details)

SQL Data Definition

Specify table schemas using CREATE TABLE
Specify each column’s name and domain
Can specify domain constraint: NOT NULL

Can specify key constraints
PRIMARY KEY
UNIQUE (candidate keys)
REFERENCES table (column) (foreign keys)

Key constraints can go in column declaration

Can also specify keys after all column decls.

Be familiar with common SQL data types
INTEGER, CHAR, VARCHAR, date/time types, etc.

DDL Example

Relation schema:

car(license, vin, make, model, year)

vin is also a candidate key

CREATE TABLE statement:
CREATE TABLE car (
license CHAR(10) PRIMARY KEY,
vin CHAR (30) NOT NULL UNIQUE,
make VARCHAR (20) NOT NULL,
model VARCHAR (20) NOT NULL,
year INTEGER NOT NULL

DDL Example (2)

Relation schema:

claim(driver_id, license, date, description, amount)

CREATE TABLE statement:
CREATE TABLE claim (

driver id
license
date
description
amount

PRIMARY KEY
FOREIGN KEY
FOREIGN KEY

CHAR (12) ,

CHAR (10) ,

TIMESTAMP,

VARCHAR (4000) NOT NULL,
NUMERIC (8,2),

(driver id, license, date),
driver id REFERENCES customer,
license REFERENCES car

Key Constraints and NULL

Some key constraints automatically include
NOT NULL constraints, but not all do.

PRIMARY KEY constraints
Disallows NULL values

UNIQUE constraints

Allows NULL values, unless you specify NOT NULL
FOREIGN KEY constraints

Allows NULL values , unless you specify NOT NULL

Understand how NULL values affect UNIQUE and
FOREIGN KEY constraints that allow NULLs

Referential Integrity Constraints

Unlike relational algebra, SQL DBs automatically
enforce referential integrity constraints for you

You still need to perform operations in the correct order,
though

Same example as before:
Remove customer “Jones” from the bank database

DBMS will ensure that referential integrity is enforced, but
you still have to delete rows from depositor and
borrower tables first!

DELETE FROM depositor WHERE customer name = 'Jones'
DELETE FROM borrower WHERE customer name = 'Jones'
DELETE FROM customer WHERE customer name = 'Jones'

Midterm Details

s pF
1 No homework to do next week

1 Good luck! ©

