SQL QUERY EVALUATION

Query Evaluation

Last time:
Began looking at database implementation details
How data is stored and accessed by the database

Using indexes to dramatically speed up certain kinds of
lookups

Today: What happens when we issue a query?
...and how can we make it faster?

To optimize database queries, must understand
what the database does to compute a result

Query Evaluation (2)

Today:
Will look at higher-level query evaluation details

How relational algebra operations are implemented

Common-case optimizations employed in implementations

More details on how the database uses these details to
plan and optimize your queries

There are always exceptions...

e.g. MySQL’s join processor is very different from others

Every DBMS has documentation about query evaluation
and query optimization, for that specific database

SQL Query Processing

Databases go through three basic steps:
Parse SQL into an internal representation of a plan
Transform this into an optimized execution plan
Evaluate the optimized execution plan
Execution plans are generally based on the
extended relational algebra
Includes generalized projection, grouping, etc.

Also some other features, like sorting results, nested
queries, LIMIT /OFFSET, etc.

Query Evaluation Example

A simple query:
SELECT tl.a FROM tl1, t2
WHERE tl1l.b = t2.b AND t2.c = 10;

Translating directly into the relational algebra:
11 o(C416 = 126 A 12.c = 10(T X 12))
Database might create this structure: .

DBs usually implement common join
operations with theta-join plan nodes

Can be evaluated using a push- 1.5= 125 A 12.0= 10
or a pull-based approach

Evaluation loop retrieves results
from top-level 11 operation

t1 t2

Query Optimization

Are there alternate formulations of our query?

L1 o(O416 = 126 A 12.c = 10(HT X 12))
L1 o(#T X415 = 12 (O2.c = 10(12)))

L7 o(Ohoc = 10(HT My1p = 2 12))
Which one is fasteste

The query optimizer generates many equivalent plans
using a set of equivalence rules

Cost-based optimizers assign each plan a cost, and then the
lowest-cost plan is chosen for execution

Heuristic optimizers just follow a set of rules for optimizing
a query plan

Query Evaluation Costs

A variety of costs in query evaluation

Primary expense is reading data from disk
Usually, data being processed won't fit entirely into memory
Try to minimize disk seeks, reads and writes!

CPU and memory requirements are secondary

Some ways of computing a result require more CPU and
memory resources than others

Becomes especially important in concurrent usage scenarios
Can be other costs as well

In distributed database systems, network bandwidth must be
managed by query optimizer

Query Optimization (2)

Several questions the optimizer has to consider:

How is a relation’s data stored on the disk?

...and what access paths are available to the data?
What implementations of the relational algebra
operations are available to use?

Will one implementation of a particular operation be much
better or worse than another?

How does the database decide which query execution
plan is best?

Given the answers to these questions, what can we
do to make the database go faster?

Select Operation

How to implement G, operation?
Easy solution from last time: scan the entire data file

Called a file scan

Test selection predicate against each tuple in the data file

Will be slow, since every disk block must be read

This is a general solution, but not a fast one.

What is the selection predicate P?¢

Depending on the characteristics of P, might be able to
choose a more optimal evaluation strategy

If we can’t, just stick with the file scan

Select Operation (2)

Most select predicates involve a binary comparison
“Is an attribute equal to some value?”
“Is an attribute less than some value?”

If data file was ordered, could use a binary search...
Would substantially reduce number of blocks read

Maintaining the logical record ordering becomes very costly
if data changes frequently

Solution:
Continue using heap file organization for table data

For important attributes, build indexes against the data file
Index provides a faster way to find specific values in the data file

Select Operation

Query planner/optimizer looks at all access paths
available for a given attribute
For select operations:

If select predicate is an equality test and an index is
available for that attribute, can use an index scan

Can also use index scan for comparison/range tests if
an ordered index is available for the attribute

For more complicated tests, or if no index is
available for attributes being used:

Use the simple file scan approach

Query Optimization Using Indexes

Database query optimizer
looks for available indexes

If a select/lookup operation T

-

can use an index, execution X o
plan is annotated with this detail ‘

Overall plan cost is computed . index scan on 12
M e . ° ° G
including these optimizations H |

Indexes can only be exploited
in certain circumstances t2

Typically, only by plan nodes
that directly access the table

e.g. original plan can’t really X o
exploit indexes at all ® |

t1 t2

Project Operation

Project operation is simple to implement

For each input tuple, create a new tuple with only the
specified attributes

May also involve computed values

Which would be faster, in general?

Hpalance(Obatance < 2500(account))

Ohalance < 2500(! Ipaiancel@ccount))

Want to project as few rows as possible, to minimize CPU
and memory usage

DO SeleCT f”'ST: Hbclcnce(Gbclance < 2500(Gccounf))

Good heuristic example: “Do projects as late as possible.”

Sorting

SQL allows results to be ordered

Databases must provide sorting capabilities in
execution plans
Data being sorted may be much larger than memory!

For tables that fit in memory, traditional sorting
techniques are used (e.g. quick-sort)

For tables that are larger than memory, must use an
external-memory sorting technique

Table is divided into runs to be sorted in memory

Each run is sorted, then written to a temporary file
All runs are merged using an N-way merge sort

Sorting (2)

In general, sorting should be applied as late as
possible

|deally, rows being sorted will fit into memory
Some other operations can also use sorted inputs to
improve performance

Join operations

Grouping and aggregation

Usually occurs when sorted results are already available
Could also perform sorting with an ordered index

Scan index, and retrieve each tuple from table file in order

With magnetic disks, seek-time usually makes this prohibitive
(solid-state disks don’t have this issuel)

Join Operations

Join operations are very common in SQL queries
...especially when using normalized schemas

Could also potentially be a very costly operation!
rixi s defined as G, 4 — (A(r X s)

A simple strategy for r Mg s :
for each tuple t in r do begin
for each tuple t. in s do begin
if t., t. satisfy condition O then
add t -t to result
end

end

t - t. denotes the concatenation of t with t,

Nested-Loop Join

Called the nested-loop join algorithm:

for each tuple t in r do begin
for each tuple t. in s do begin

if t., t. satisfy condition O then

rr’'s

add t -t to result
end
end

A very slow join implementation
Scans r once, and scans s once for each row inr !
Not so horrible if s fits entirely in memory
But, it can handle arbitrary conditions
For some queries, the only option is a nested-loop join!

Indexed Nested-Loop Join

Most join conditions involve equalities
Called equijoins

Indexes can speed up table lookups...

Modify nested-loop join to use indexes in inner loop:
for each tuple t in r do begin
use index on s to retrieve tuple t,
if 1., t. satisfy condition O then

add t. - t, to result
end

Only an option for equijoins, where an index exists
for the join attributes

MyYSQL Join Processor

MySQL join processor is based on nested-loop join algorithm

Instead of joining two tables, can join N tables at once
for each tuple t. in r do begin
for each tuple t, in s do begin
for each tuple t, in t do begin
ift., 1,1, ... satisfy condition O then
add t. -t -t - ... to result
end
end
end

Employs many optimizations

When possible, outer table is processed in blocks, to reduce
number of iterations over inner tables

Indexes are exploited heavily for finding tuples in inner tables.
If a subquery can be resolved into a constant, it is.

MyYSQL Join Processor (2)

Since MySQL join processor relies so heavily on indexes,
what kinds of queries is it bad at?

Queries against tables without indexes... (duh)

Queries involving joins against derived relations (ugh!)

MySQL isn’t smart enough to save the derived relation into a
temporary table, then build an index against it

A common technique for optimizing complex queries in MySQL
For more sophisticated queries, really would like more
advanced join algorithms...

Most DBs include several other very powerful join algorithms

(Can’t add to MySQIL easily, since it doesn’t use relational
algebra as a query-plan representation...)

Sort-Merge Join

If tables are already ordered by join attributes, can
use a merge-sort technique

Must be an equijoin!
Simple high-level description:
Two pointers to traverse tables in order:
p, starts at first tuple in r
p, starts at first tuple in s
If one pointer’s tuple has join-attribute values less than the
other pointer, advance that pointer

When pointers have the same value of the join attribute,

generate joins using those rows
If p, or p, points to a run of records with the same value, must
include all of these records in the join result

Sort-Merge Join (2)

Much better performance than nested-loop join
Dramatically reduces disk accesses

Unfortunately, relations aren’t usually ordered

Can also enhance sort-merge joins when at least one
relation has an index on the join attributes

e.g. one relation is sorted, and the unsorted relation has an
index on the join attributes

Traverse unsorted relation’s index in order
When rows match, use index to pull those tuples from disk

Disk seek cost must be managed carefully with this technique

e.g. can sort record pointers before reading the tuples from disk,
to minimize the overall seek time

Hash Join

Another join technique for equijoins

For tables r and s :

Use a hash function on the join attributes to divide rows
of r and s into partitions

Use same hash function on both r and s, of course

Partitions are saved to disk as they are generated

Aim for each partition to fit in memory

r partitions: H ., H., ..., H_

s partitions: H,,, H,, ..., H,,
Rows in H,. will only join with rows in H_

Hash Join (2)

After partitioning:
fori=1tondo
build a hash index on H,; (using a second hash function!)
for each row t. in H..
probe hash index for matching rows in H;
for each matching tuple t, in H,
add t, - t, to result
end
end
end

Very fast and efficient equijoin strategy
Very good for joining against derived relations!

Can perform badly when rows can’t be hashed into
partitions that fit into memory

Quter Joins

Join algorithms can be modified to generate left
outer joins reasonably efficiently

Right outer join can be restated as left outer join

Will still impact overall query performance if many rows
are generated

Full outer joins can be significantly harder to
implement
Sort-merge join can compute full outer join easily
Nested loop and hash join are much harder to extend

Full outer joins can also impact query performance heavily

Other Operations

Set operations require duplicate elimination

Duplicate elimination can be performed with sorting or with
hashing

Grouping and aggregation can be implemented in
several ways
Can sort results on the grouping attributes, then compute
aggregates over the sorted values

All rows in a given group are adjacent to each other, so uses
memory very efficiently (at least, after the sorting step...)

MySQL uses this approach by default

Can also use hashing to perform grouping and aggregation

Hash tuples on the grouping attributes, and compute each group’s
aggregate values incrementally

Optimizing Query Performance

To improve query performance, you must know how
the database actually runs your query
Discussed the “explain” statement last time

Runs planner and optimizer on your query, then outputs
the plan and corresponding cost estimates

Using this information, you can:
Create indexes on tables, where appropriate
Restate the query to help the DB pick a better plan
Harder cases may require multiple steps:

Generate intermediate results more well-suited for
the desired query

Then, use intermediate results to generate final results

Query Execution Example

For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG (last submission_size) AS
avg last submission_size
FROM assignment NATURAL JOIN
submission NATURAL JOIN
(SELECT sub_id,
total size AS last submission_size
FROM fileset NATURAL JOIN
(SELECT sub_id, MAX(sub date) AS sub date
FROM fileset GROUP BY sub id
) AS last sub dates

) AS last sub sizes Find the date of the last fileset submitted for each
GROUP BY shortname; student’s submission. Name the result columns to

allow a natural join against the fileset table.

Query Execution Example (2)

For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG (last submission_size) AS
avg last submission_size
FROM assignment NATURAL JOIN
submission NATURAL JOIN
(SELECT sub_id,
total size AS last submission_size
FROM fileset NATURAL JOIN
(SELECT sub_id, MAX(sub date) AS sub date
FROM fileset GROUP BY sub id
) AS last sub dates
) AS last sub sizes
GROUP BY shortname; Join the derived result against fileset so we can
retrieve the total size of the submitted files.

Query Execution Example (3)

For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG (last submission_size) AS
avg last submission_size
FROM assignment NATURAL JOIN
submission NATURAL JOIN
(SELECT sub_id,
total size AS last submission_size
FROM fileset NATURAL JOIN
(SELECT sub_id, MAX(sub date) AS sub date
FROM fileset GROUP BY sub id
) AS last sub dates
) AS last sub sizes
GROUP BY shortname;
Outermost query finds the averages of these last submissions,
and also incorporates the short-name of each assignment.

MySQL Execution and Analysis

MySQL executes this query rather slowly”

About 3 sec on a server with 8GB RAM, RAID1 mirroring

Intuitively makes sense...

Joins against derived relations, non-index columns, etc.
All the stuff that MySQL isn’t so good at handling

EXPLAIN output:

s st et T e Tt - - e e T E T e e +--———- e et +
| id | select_type | table | type | possible keys | key | key_len | ref | rows | Extra |
e e e et - - Fomm - dommmm - - e e T E T e e +--———- e et +
1	PRIMARY	<derived2>	ALL	NULL	NULL	NULL	NULL	1506	Using temporary; Using filesort
1	PRIMARY	submission	eq_ref	PRIMARY	PRIMARY	4	last_sub sizes.sub_id	1	
1	PRIMARY	assignment	eq_ref	PRIMARY	PRIMARY	4	donnie_db.submission.asn_id	1	
2	DERIVED	<derived3>	ALL	NULL	NULL	NULL	NULL	1506	
2	DERIVED	fileset	ALL	NULL	NULL	NULL	NULL	2799	Using where; Using join buffer
2	DERIVED	submission	eq_ref	PRIMARY	PRIMARY	4	last_sub dates.sub_id	1	Using index
3	DERIVED	fileset	ALL	NULL	NULL	NULL	NULL	2799	Using temporary; Using filesort
e e E e e et - - Fomm - dommmm - - - e e T E T e e +--———- e et +

Confirms our suspicions

Can optimize by storing innermost results in a temp
table, and creating indexes on (sub_id, sub_date)

" Test was performed with MySQL 5.1; MariaDB 5.5 executes this query extremely quickly.

PostgreSQL Execution/Analysis (1)

Postgres executes this query instantaneously. On a laptop.

Fundamental difference: more sophisticated join algorithms

Specifically hash join, which is very good at joining relations on non-
indexed attributes

EXPLAIN output:

HashAggregate (cost=221.38..221.39 rows=1 width=8)
-> Nested Loop (cost=144.28..221.37 rows=1 width=8)
-> Nested Loop (cost=144.28..213.09 rows=1 width=20)
-> Nested Loop (cost=144.28..212.81 rows=1 width=20)
-> Hash Join (cost=144.28..204.53 rows=1l width=12)
Hash Cond: ((fileset.sub_id = fileset.sub_id) AND ((max(fileset.sub_date)) = fileset.sub date))
-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)
-> Hash (cost=44.57..44.57 rows=2757 width=16)
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)
-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)
Index Cond: (submission.sub_id = fileset.sub_id)
-> 1Index Scan using assignment pkey on assignment (cost=0.00..0.27 rows=1 width=8)
Index Cond: (assignment.asn_id = submission.asn_id)
-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)
Index Cond: (submission.sub_id = fileset.sub_id)

As expected, Postgres uses a hash join to join the derived
relation against £11eset table on non-index columns

PostgreSQL Execution/Analysis (2)

Can disable various join algorithms in Postgres ©
SET enable hashjoin = off;

EXPLAIN output:

HashAggregate (cost=422.68..422.69 rows=1 width=8)
-> Nested Loop (cost=373.85..422.67 rows=1 width=8)
-> Nested Loop (cost=373.85..414.39 rows=1 width=20)
-> Nested Loop (cost=373.85..414.11 rows=1 width=20)
-> Merge Join (cost=373.85..405.83 rows=1 width=12)
Merge Cond: ((fileset.sub_id = fileset.sub_id) AND (fileset.sub date = (max(fileset.sub_date))))
-> Sort (cost=202.12..209.01 rows=2757 width=16)
Sort Key: fileset.sub_id, fileset.sub_date
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)
-> Sort (cost=171.73..175.50 rows=1506 width=12)
Sort Key: fileset.sub_id, (max(fileset.sub_date))
-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)
-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)
Index Cond: (submission.sub_id = fileset.sub_id)
-> 1Index Scan using assignment pkey on assignment (cost=0.00..0.27 rows=1 width=8)
Index Cond: (assignment.asn_id = submission.asn_id)
-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)
Index Cond: (submission.sub_id = fileset.sub_id)

Sort + sort-merge join is still faster than nested loops!!

PostgreSQL Execution/Analysis (3)

Now, disable sort-merge joins too:
SET enable mergejoin = off;

Finally, Postgres performance is closer to MySQL

EXPLAIN output:

(cost=103956.21..103956.23 rows=1l width=8)
(cost=93.75..103956.21 rows=1l width=8)
(cost=93.75..103947.93 rows=1 width=20)
(cost=93.75..103947.65 rows=1 width=20)
(cost=93.75..103939.37 rows=1l width=12)

Join Filter: ((fileset.sub_id = fileset.sub_id) AND (fileset.sub_date = (max(fileset.sub_date))))

-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)

-> Materialize (cost=93.75..108.81 rows=1506 width=12)

-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)

-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)

Index Cond: (submission.sub_id = fileset.sub_id)
-> 1Index Scan using assignment pkey on assignment (cost=0.00..0.27 rows=1 width=8)

Index Cond: (assignment.asn_id = submission.asn_id)
-> 1Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)

Index Cond: (submission.sub_id = fileset.sub_id)

HashAggregate
-> Nested Loop
-> Nested Loop

-> Nested Loop

-> Nested Loop

Query Estimates

Query planner/optimizer must make estimates about the cost
of each stage

Database maintains statistics for each table, to facilitate
planning and optimization

Different levels of detail:

Some DBs only track min/max/count of values in each column.
Estimates are very basic.

Some DBs generate and store histograms of values in important
columns. Estimates are much more accurate.

Different levels of accuracy:

Statistics are expensive to maintain! Databases update these
statistics relatively infrequently.

If a table’s contents change substantially, must recompute statistics

Table Statistics Analysis

Databases also frequently provide a command to
compute table statistics
MySQL command:
ANALYZE TABLE assignment, submission, fileset;
PostgreSQL command:
VACUUM ANALYZE;

for all tables in database

VACUUM ANALYZE tablename;
for a specific table

These commands are expensive!
Perform a full table-scan
Also, typically lock the table(s) for exclusive access

Review

Discussed general details of how most databases
evaluate SQL queries
Some relational algebra operations have several
ways to evaluate them
Optimizations for very common special cases, e.g.
equijoins
Can give the database some guidance
Create indexes on tables where appropriate
Rewrite queries to be more efficient

Make sure statistics are up-to-date, so that planner has
best chance of generating a good plan

