
SQL QUERY EVALUATION
CS121: Relational Databases
Fall 2018 – Lecture 12

Query Evaluation

¨ Last time:
¤ Began looking at database implementation details
¤ How data is stored and accessed by the database
¤ Using indexes to dramatically speed up certain kinds of

lookups

¨ Today: What happens when we issue a query?
¤ …and how can we make it faster?

¨ To optimize database queries, must understand
what the database does to compute a result

2

Query Evaluation (2)

¨ Today:
¤ Will look at higher-level query evaluation details
¤ How relational algebra operations are implemented

n Common-case optimizations employed in implementations
¤ More details on how the database uses these details to

plan and optimize your queries
¨ There are always exceptions…

¤ e.g. MySQL’s join processor is very different from others
¤ Every DBMS has documentation about query evaluation

and query optimization, for that specific database

3

SQL Query Processing

¨ Databases go through three basic steps:
¤ Parse SQL into an internal representation of a plan
¤ Transform this into an optimized execution plan
¤ Evaluate the optimized execution plan

¨ Execution plans are generally based on the
extended relational algebra
¤ Includes generalized projection, grouping, etc.
¤ Also some other features, like sorting results, nested

queries, LIMIT/OFFSET, etc.

4

Query Evaluation Example

¨ A simple query:
SELECT t1.a FROM t1, t2
WHERE t1.b = t2.b AND t2.c = 10;

¨ Translating directly into the relational algebra:
Pt1.a(st1.b = t2.b ∧ t2.c = 10(t1 × t2))

¨ Database might create this structure:
¤ DBs usually implement common join

operations with theta-join plan nodes
¤ Can be evaluated using a push-

or a pull-based approach
¤ Evaluation loop retrieves results

from top-level P operation
t1 t2

θ

σ
t1.b = t2.b� t2.c = 10

Π
t1.a

true

5

Query Optimization

¨ Are there alternate formulations of our query?
Pt1.a(st1.b = t2.b ∧ t2.c = 10(t1 × t2))
Pt1.a(t1 t1.b = t2.b (st2.c = 10(t2)))
Pt1.a(st2.c = 10(t1 t1.b = t2.b t2))

¤ Which one is fastest?

¨ The query optimizer generates many equivalent plans
using a set of equivalence rules
¤ Cost-based optimizers assign each plan a cost, and then the

lowest-cost plan is chosen for execution
¤ Heuristic optimizers just follow a set of rules for optimizing

a query plan

6

Query Evaluation Costs

¨ A variety of costs in query evaluation
¨ Primary expense is reading data from disk

¤ Usually, data being processed won’t fit entirely into memory
¤ Try to minimize disk seeks, reads and writes!

¨ CPU and memory requirements are secondary
¤ Some ways of computing a result require more CPU and

memory resources than others
¤ Becomes especially important in concurrent usage scenarios

¨ Can be other costs as well
¤ In distributed database systems, network bandwidth must be

managed by query optimizer

7

Query Optimization (2)

¨ Several questions the optimizer has to consider:
¤ How is a relation’s data stored on the disk?

n …and what access paths are available to the data?
¤ What implementations of the relational algebra

operations are available to use?
n Will one implementation of a particular operation be much

better or worse than another?
¤ How does the database decide which query execution

plan is best?
¨ Given the answers to these questions, what can we

do to make the database go faster?

8

Select Operation

¨ How to implement sP operation?
¨ Easy solution from last time: scan the entire data file

¤ Called a file scan
¤ Test selection predicate against each tuple in the data file
¤ Will be slow, since every disk block must be read

¨ This is a general solution, but not a fast one.
¨ What is the selection predicate P?

¤ Depending on the characteristics of P, might be able to
choose a more optimal evaluation strategy

¤ If we can’t, just stick with the file scan

9

Select Operation (2)

¨ Most select predicates involve a binary comparison
¤ “Is an attribute equal to some value?”
¤ “Is an attribute less than some value?”

¨ If data file was ordered, could use a binary search…
¤ Would substantially reduce number of blocks read
¤ Maintaining the logical record ordering becomes very costly

if data changes frequently
¨ Solution:

¤ Continue using heap file organization for table data
¤ For important attributes, build indexes against the data file

n Index provides a faster way to find specific values in the data file

10

Select Operation

¨ Query planner/optimizer looks at all access paths
available for a given attribute

¨ For select operations:
¤ If select predicate is an equality test and an index is

available for that attribute, can use an index scan
¤ Can also use index scan for comparison/range tests if

an ordered index is available for the attribute
¨ For more complicated tests, or if no index is

available for attributes being used:
¤ Use the simple file scan approach

11

Query Optimization Using Indexes

¨ Database query optimizer
looks for available indexes
¤ If a select/lookup operation

can use an index, execution
plan is annotated with this detail

¤ Overall plan cost is computed
including these optimizations

¨ Indexes can only be exploited
in certain circumstances
¤ Typically, only by plan nodes

that directly access the table
¤ e.g. original plan can’t really

exploit indexes at all L

t1

t2

θ

σ
t2.c = 10

Π
t1.a

t1.b = t2.b

index scan on t2

index scan on t1

t1 t2

θ

σ
t1.b = t2.b� t2.c = 10

Π
t1.a

true

12

Project Operation

¨ Project operation is simple to implement
¤ For each input tuple, create a new tuple with only the

specified attributes
¤ May also involve computed values

¨ Which would be faster, in general?
Pbalance(sbalance < 2500(account))
sbalance < 2500(Pbalance(account))

¤ Want to project as few rows as possible, to minimize CPU
and memory usage
n Do select first: Pbalance(sbalance < 2500(account))

¤ Good heuristic example: “Do projects as late as possible.”

13

Sorting

¨ SQL allows results to be ordered
¨ Databases must provide sorting capabilities in

execution plans
¤ Data being sorted may be much larger than memory!

¨ For tables that fit in memory, traditional sorting
techniques are used (e.g. quick-sort)

¨ For tables that are larger than memory, must use an
external-memory sorting technique
¤ Table is divided into runs to be sorted in memory
¤ Each run is sorted, then written to a temporary file
¤ All runs are merged using an N-way merge sort

14

Sorting (2)

¨ In general, sorting should be applied as late as
possible
¤ Ideally, rows being sorted will fit into memory

¨ Some other operations can also use sorted inputs to
improve performance
¤ Join operations
¤ Grouping and aggregation
¤ Usually occurs when sorted results are already available

¨ Could also perform sorting with an ordered index
¤ Scan index, and retrieve each tuple from table file in order
¤ With magnetic disks, seek-time usually makes this prohibitive

n (solid-state disks don’t have this issue!)

15

Join Operations

¨ Join operations are very common in SQL queries
¤ …especially when using normalized schemas

¨ Could also potentially be a very costly operation!
¤ r s defined as sr.A = s.A(r ´ s)

¨ A simple strategy for r q s :
for each tuple tr in r do begin

for each tuple ts in s do begin
if tr , ts satisfy condition q then

add tr · ts to result
end

end

¨ tr · ts denotes the concatenation of tr with ts

16

Nested-Loop Join

¨ Called the nested-loop join algorithm:
for each tuple tr in r do begin

for each tuple ts in s do begin
if tr , ts satisfy condition q then

add tr · ts to result
end

end

¨ A very slow join implementation
¤ Scans r once, and scans s once for each row in r !
¤ Not so horrible if s fits entirely in memory

¨ But, it can handle arbitrary conditions
¤ For some queries, the only option is a nested-loop join!

17

Indexed Nested-Loop Join

¨ Most join conditions involve equalities
¤ Called equijoins

¨ Indexes can speed up table lookups…
¨ Modify nested-loop join to use indexes in inner loop:

for each tuple tr in r do begin
use index on s to retrieve tuple ts
if tr , ts satisfy condition q then

add tr · ts to result
end

¨ Only an option for equijoins, where an index exists
for the join attributes

18

MySQL Join Processor

¨ MySQL join processor is based on nested-loop join algorithm
¤ Instead of joining two tables, can join N tables at once

for each tuple tr in r do begin
for each tuple ts in s do begin

for each tuple tt in t do begin
if tr , ts , tt , … satisfy condition q then

add tr · ts · tt · … to result
end

end
end

¨ Employs many optimizations
¤ When possible, outer table is processed in blocks, to reduce

number of iterations over inner tables
¤ Indexes are exploited heavily for finding tuples in inner tables.
¤ If a subquery can be resolved into a constant, it is.

19

MySQL Join Processor (2)

¨ Since MySQL join processor relies so heavily on indexes,
what kinds of queries is it bad at?
¤ Queries against tables without indexes… (duh)
¤ Queries involving joins against derived relations (ugh!)
¤ MySQL isn’t smart enough to save the derived relation into a

temporary table, then build an index against it
n A common technique for optimizing complex queries in MySQL

¨ For more sophisticated queries, really would like more
advanced join algorithms…
¤ Most DBs include several other very powerful join algorithms
¤ (Can’t add to MySQL easily, since it doesn’t use relational

algebra as a query-plan representation…)

20

Sort-Merge Join

¨ If tables are already ordered by join attributes, can
use a merge-sort technique
¤ Must be an equijoin!

¨ Simple high-level description:
¤ Two pointers to traverse tables in order:

n pr starts at first tuple in r
n ps starts at first tuple in s

¤ If one pointer’s tuple has join-attribute values less than the
other pointer, advance that pointer

¤ When pointers have the same value of the join attribute,
generate joins using those rows
n If pr or ps points to a run of records with the same value, must

include all of these records in the join result

21

Sort-Merge Join (2)

¨ Much better performance than nested-loop join
¤ Dramatically reduces disk accesses
¤ Unfortunately, relations aren’t usually ordered

¨ Can also enhance sort-merge joins when at least one
relation has an index on the join attributes
¤ e.g. one relation is sorted, and the unsorted relation has an

index on the join attributes
¤ Traverse unsorted relation’s index in order
¤ When rows match, use index to pull those tuples from disk
¤ Disk seek cost must be managed carefully with this technique

n e.g. can sort record pointers before reading the tuples from disk,
to minimize the overall seek time

22

Hash Join

¨ Another join technique for equijoins
¨ For tables r and s :

¤ Use a hash function on the join attributes to divide rows
of r and s into partitions
n Use same hash function on both r and s, of course
n Partitions are saved to disk as they are generated
n Aim for each partition to fit in memory
n r partitions: Hr1, Hr2, …, Hrn
n s partitions: Hs1, Hs2, …, Hsn

¤ Rows in Hri will only join with rows in Hsi

23

Hash Join (2)

¨ After partitioning:
for i = 1 to n do

build a hash index on Hsi (using a second hash function!)
for each row tr in Hri

probe hash index for matching rows in Hsi
for each matching tuple ts in Hsi

add tr · ts to result
end

end
end

¨ Very fast and efficient equijoin strategy
¤ Very good for joining against derived relations!
¤ Can perform badly when rows can’t be hashed into

partitions that fit into memory

24

Outer Joins

¨ Join algorithms can be modified to generate left
outer joins reasonably efficiently
¤ Right outer join can be restated as left outer join
¤ Will still impact overall query performance if many rows

are generated

¨ Full outer joins can be significantly harder to
implement
¤ Sort-merge join can compute full outer join easily
¤ Nested loop and hash join are much harder to extend
¤ Full outer joins can also impact query performance heavily

25

Other Operations

¨ Set operations require duplicate elimination
¤ Duplicate elimination can be performed with sorting or with

hashing
¨ Grouping and aggregation can be implemented in

several ways
¤ Can sort results on the grouping attributes, then compute

aggregates over the sorted values
n All rows in a given group are adjacent to each other, so uses

memory very efficiently (at least, after the sorting step…)
n MySQL uses this approach by default

¤ Can also use hashing to perform grouping and aggregation
n Hash tuples on the grouping attributes, and compute each group’s

aggregate values incrementally

26

Optimizing Query Performance

¨ To improve query performance, you must know how
the database actually runs your query

¨ Discussed the “explain” statement last time
¤ Runs planner and optimizer on your query, then outputs

the plan and corresponding cost estimates
¨ Using this information, you can:

¤ Create indexes on tables, where appropriate
¤ Restate the query to help the DB pick a better plan

¨ Harder cases may require multiple steps:
¤ Generate intermediate results more well-suited for

the desired query
¤ Then, use intermediate results to generate final results

27

Query Execution Example

¨ For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG(last_submission_size) AS

avg_last_submission_size
FROM assignment NATURAL JOIN

submission NATURAL JOIN
(SELECT sub_id,

total_size AS last_submission_size
FROM fileset NATURAL JOIN

(SELECT sub_id, MAX(sub_date) AS sub_date
FROM fileset GROUP BY sub_id
) AS last_sub_dates

) AS last_sub_sizes
GROUP BY shortname;

Find the date of the last fileset submitted for each
student’s submission. Name the result columns to
allow a natural join against the fileset table.

28

Query Execution Example (2)

¨ For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG(last_submission_size) AS

avg_last_submission_size
FROM assignment NATURAL JOIN

submission NATURAL JOIN
(SELECT sub_id,

total_size AS last_submission_size
FROM fileset NATURAL JOIN

(SELECT sub_id, MAX(sub_date) AS sub_date
FROM fileset GROUP BY sub_id
) AS last_sub_dates

) AS last_sub_sizes
GROUP BY shortname; Join the derived result against fileset so we can

retrieve the total size of the submitted files.

29

Query Execution Example (3)

¨ For each assignment, finds the average size of the last
submission from students for that assignment:

SELECT shortname,
AVG(last_submission_size) AS

avg_last_submission_size
FROM assignment NATURAL JOIN

submission NATURAL JOIN
(SELECT sub_id,

total_size AS last_submission_size
FROM fileset NATURAL JOIN

(SELECT sub_id, MAX(sub_date) AS sub_date
FROM fileset GROUP BY sub_id
) AS last_sub_dates

) AS last_sub_sizes
GROUP BY shortname;

Outermost query finds the averages of these last submissions,
and also incorporates the short-name of each assignment.

30

MySQL Execution and Analysis

¨ MySQL executes this query rather slowly*

¤ About 3 sec on a server with 8GB RAM, RAID1 mirroring
¤ Intuitively makes sense…

n Joins against derived relations, non-index columns, etc.
n All the stuff that MySQL isn’t so good at handling

¨ EXPLAIN output:

¨ Confirms our suspicions
¨ Can optimize by storing innermost results in a temp

table, and creating indexes on (sub_id, sub_date)

+----+-------------+------------+--------+---------------+---------+---------+-----------------------------+------+---------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-----------------------------+------+---------------------------------+
1	PRIMARY	<derived2>	ALL	NULL	NULL	NULL	NULL	1506	Using temporary; Using filesort
1	PRIMARY	submission	eq_ref	PRIMARY	PRIMARY	4	last_sub_sizes.sub_id	1	
1	PRIMARY	assignment	eq_ref	PRIMARY	PRIMARY	4	donnie_db.submission.asn_id	1	
2	DERIVED	<derived3>	ALL	NULL	NULL	NULL	NULL	1506	
2	DERIVED	fileset	ALL	NULL	NULL	NULL	NULL	2799	Using where; Using join buffer
2	DERIVED	submission	eq_ref	PRIMARY	PRIMARY	4	last_sub_dates.sub_id	1	Using index
3	DERIVED	fileset	ALL	NULL	NULL	NULL	NULL	2799	Using temporary; Using filesort
+----+-------------+------------+--------+---------------+---------+---------+-----------------------------+------+---------------------------------+

* Test was performed with MySQL 5.1; MariaDB 5.5 executes this query extremely quickly.

31

PostgreSQL Execution/Analysis (1)

¨ Postgres executes this query instantaneously. On a laptop.
¤ Fundamental difference: more sophisticated join algorithms

n Specifically hash join, which is very good at joining relations on non-
indexed attributes

¨ EXPLAIN output:

¨ As expected, Postgres uses a hash join to join the derived
relation against fileset table on non-index columns

HashAggregate (cost=221.38..221.39 rows=1 width=8)
-> Nested Loop (cost=144.28..221.37 rows=1 width=8)

-> Nested Loop (cost=144.28..213.09 rows=1 width=20)
-> Nested Loop (cost=144.28..212.81 rows=1 width=20)

-> Hash Join (cost=144.28..204.53 rows=1 width=12)
Hash Cond: ((fileset.sub_id = fileset.sub_id) AND ((max(fileset.sub_date)) = fileset.sub_date))
-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)

-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)
-> Hash (cost=44.57..44.57 rows=2757 width=16)

-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)
-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)

Index Cond: (submission.sub_id = fileset.sub_id)
-> Index Scan using assignment_pkey on assignment (cost=0.00..0.27 rows=1 width=8)

Index Cond: (assignment.asn_id = submission.asn_id)
-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)

Index Cond: (submission.sub_id = fileset.sub_id)

32

PostgreSQL Execution/Analysis (2)

¨ Can disable various join algorithms in Postgres J
¤ SET enable_hashjoin = off;

¨ EXPLAIN output:

¨ Sort + sort-merge join is still faster than nested loops!!

HashAggregate (cost=422.68..422.69 rows=1 width=8)
-> Nested Loop (cost=373.85..422.67 rows=1 width=8)

-> Nested Loop (cost=373.85..414.39 rows=1 width=20)
-> Nested Loop (cost=373.85..414.11 rows=1 width=20)

-> Merge Join (cost=373.85..405.83 rows=1 width=12)
Merge Cond: ((fileset.sub_id = fileset.sub_id) AND (fileset.sub_date = (max(fileset.sub_date))))
-> Sort (cost=202.12..209.01 rows=2757 width=16)

Sort Key: fileset.sub_id, fileset.sub_date
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)

-> Sort (cost=171.73..175.50 rows=1506 width=12)
Sort Key: fileset.sub_id, (max(fileset.sub_date))
-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)

-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)
-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)

Index Cond: (submission.sub_id = fileset.sub_id)
-> Index Scan using assignment_pkey on assignment (cost=0.00..0.27 rows=1 width=8)

Index Cond: (assignment.asn_id = submission.asn_id)
-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)

Index Cond: (submission.sub_id = fileset.sub_id)

33

PostgreSQL Execution/Analysis (3)

¨ Now, disable sort-merge joins too:
¤ SET enable_mergejoin = off;

¨ Finally, Postgres performance is closer to MySQL
¨ EXPLAIN output:

HashAggregate (cost=103956.21..103956.23 rows=1 width=8)
-> Nested Loop (cost=93.75..103956.21 rows=1 width=8)

-> Nested Loop (cost=93.75..103947.93 rows=1 width=20)
-> Nested Loop (cost=93.75..103947.65 rows=1 width=20)

-> Nested Loop (cost=93.75..103939.37 rows=1 width=12)
Join Filter: ((fileset.sub_id = fileset.sub_id) AND (fileset.sub_date = (max(fileset.sub_date))))
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=16)
-> Materialize (cost=93.75..108.81 rows=1506 width=12)

-> HashAggregate (cost=58.35..77.18 rows=1506 width=12)
-> Seq Scan on fileset (cost=0.00..44.57 rows=2757 width=12)

-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=8)
Index Cond: (submission.sub_id = fileset.sub_id)

-> Index Scan using assignment_pkey on assignment (cost=0.00..0.27 rows=1 width=8)
Index Cond: (assignment.asn_id = submission.asn_id)

-> Index Scan using submission_pkey on submission (cost=0.00..8.27 rows=1 width=4)
Index Cond: (submission.sub_id = fileset.sub_id)

34

Query Estimates

¨ Query planner/optimizer must make estimates about the cost
of each stage

¨ Database maintains statistics for each table, to facilitate
planning and optimization

¨ Different levels of detail:
¤ Some DBs only track min/max/count of values in each column.

Estimates are very basic.
¤ Some DBs generate and store histograms of values in important

columns. Estimates are much more accurate.
¨ Different levels of accuracy:

¤ Statistics are expensive to maintain! Databases update these
statistics relatively infrequently.

¤ If a table’s contents change substantially, must recompute statistics

35

Table Statistics Analysis

¨ Databases also frequently provide a command to
compute table statistics

¨ MySQL command:
ANALYZE TABLE assignment, submission, fileset;

¨ PostgreSQL command:
VACUUM ANALYZE;

n for all tables in database
VACUUM ANALYZE tablename;

n for a specific table
¨ These commands are expensive!

¤ Perform a full table-scan
¤ Also, typically lock the table(s) for exclusive access

36

Review

¨ Discussed general details of how most databases
evaluate SQL queries

¨ Some relational algebra operations have several
ways to evaluate them
¤ Optimizations for very common special cases, e.g.

equijoins
¨ Can give the database some guidance

¤ Create indexes on tables where appropriate
¤ Rewrite queries to be more efficient
¤ Make sure statistics are up-to-date, so that planner has

best chance of generating a good plan

37

