DATABASE PERFORMANCE
AND INDEXES

Database Performance

Many situations where query performance needs to be
improved

e.g. as data size grows, query performance degrades and
tuning needs to be performed

Extreme cases: data warehouses with millions or billions of
rows to aggregate and summarize

To optimize queries effectively, we must understand
what the database is doing under the hood

e.g. “Why are correlated subqueries slow to evaluate?”

Because an inner query must be evaluated for each row
considered by the outer query. Thus, a good idea to avoid!

Database Performance (2)

Next two lectures will explore how most databases
evaluate queries

Specifically, how are relational algebra operations
implemented, and what optimizations do they employ?

As usual, there are always exceptions! (e.g. MySQL)

Important to be aware of, so you understand each DBMS’
limitations

Today, will concentrate more on data storage and
access methodologies

Next time, explore relational algebra implementations

These are built on top of topics covered today

Disk Access!

First rule of database performance:
Disk access is the most expensive thing databases do!

Accessing data in memory can be 10-100ns

Accessing data on disk can be up to 10s of ms

That’s 5-6 orders of magnitude difference!

Even solid-state drives are 10s-100s of ps (1000x slower)
Unfortunately, disk 1O is usually unavoidable

Usually the data simply doesn’t fit into memory...

Plus, the data needs to be persistent for when the DB is shut
down, or when the server crashes, etc.

DBs work very hard to minimize the amount of disk 1O

Planning and Optimization

When the query planner/optimizer gets your query:

It explores many equivalent plans, estimating their cost
(primarily 1O cost), and chooses the least expensive one
Considers many options in evaluating your query:

What access paths does it have to the data you want?

What algorithms can it use for selects, joins, sorting, etc?

What is the nature of the data itself?
i.e. statistics generated by the database, directly from your data

The planner will do the best it can... ©
Sometimes it can’t find a fast way to run your query

Also depends on sophistication of the planner itself

e.g. if planner doesn’t know how to optimize certain queries, or if
executor doesn’t implement very advanced algorithms

Table Data Storage

Databases usually store each table in its own file

File 10O is performed in fixed-size blocks or pages
Common page size is 4KB or 8KB; can often tune this value

Disks can read/write entire pages faster than small amounts
of bytes or individual records

Also makes it much easier for the database to manage
pages of data in memory

The buffer manager takes care of this very complicated task

Each block in the file contains some number of records

Frequently, individual records can vary in size...
(due to variable-size types: VARCHAR, NUMERIC, etc.)

Table Data Storage (2)

Individual blocks have internal structure, to manage:

Records that vary in size

Records that are deleted
Where and how to add a new record to the block, if
there is space for it

The table file itself also has internal structure:

Want to make sure common operations are fast!

“I want to insert a new row. Which block has space for it, or
do | have to allocate a new block at the end of the file2”

Record Organization

Should table records be organized in a specific way?

Example: records are kept in sorted order, using a key

Called a sequential file organization
Would be much faster to find records based on the key

Would be much faster to do range queries as well

Definitely complicates the storage of records!
Can’t predict order records will be added or deleted

Often requires periodic reorganization to ensure that
records remain physically sorted on the disk

Could also hash records based on some key
Called a hashing file organization

Again, speeds up access based on specific values
Similar organizational challenges arise over time...

Record Organization (2)

The most common file organization is random! ©

Called a heap file organization

Every record can be placed anywhere in the table file,
wherever there is space for the record

Virtually all databases provide heap file organization

Usually perfectly sufficient, except for most demanding
applications

Heap Files and Queries

Given that DBs normally use heap file organization,
how does the DB evaluate a query like:

SELECT * FROM account

WHERE account id = 'A-591"';

A simple approach:

Search through the entire table file, looking for all rows
where value of account id is A-591

This is called a file scan, for obvious reasons

This will be slow, but it’s all we can do so far...

Need a way to optimize accesses like this

Table Indexes

Most queries use a small number of rows from a table

Need a faster way to look up those values, besides scanning
through entire data file

Approach: build an index on the table

Each index is associated with a specific column or set of
columns in the table, called the search key for the index

Queries involving those columns can often be made much
faster by using the index on those columns

(Queries not using those columns will still use a file scan ®)
Index is always structured in some way, for fast lookups

Index is much smaller than the actual table itself
Much faster to search within the index (fewer IO operations)

Index Characteristics

Many different varieties of indexes, with different
access characteristics

What kind of lookup is most efficient for the kind of index?

How costly is it to find a particular item, or a set of items?
e.g. a query retrieving records with a range of values

Indexes do impose both a time and space overhead

Indexes must be kept up to date! Frequently, they slow
down update operations, while making selects faster.

Different kinds of indexes impose different overheads:
How much time to add a new item to the index?
How much time to delete an item from the index?
How much additional space does the index take up?

Index Characteristics (2)

Two major categories of indexes:

Ordered indexes keep values in a sorted order

Hash indexes divide values into bins, using a hash function

Many variations within these two categories!

Example: dense vs. sparse indexes

A dense index includes every single value from the source
column(s). Faster lookups, but a larger space overhead.

A sparse index only includes some of the values. Lookups
require searching more records, but index is smaller.

The indexes we are covering today are dense indexes

Heap files are in random order, so an index won’t help us very
much unless it includes every value from the table

Index Implementations

Indexes are usually stored in files separate from the
actual table data

Indexes are also read/written as blocks

(Same reasons as before...)

Indexes use record pointers to reference specific
records in the table file

Simply consists of the block number the record is in, and
the offset of the record within that block

Index records contain values (or hashes), and one or
more pointers to table records with those values

Index Implementations (2)

Virtually all databases provide ordered indexes, using
some kind of balanced tree structure

B*-tree and B-tree indexes, typically referred to as “btree”
indexes

Some databases also provide hash indexes

More complex to manage than ordered indexes, so not very
common in open-source databases

Several other kinds of indexes as well:
Bitmap indexes — to speed up queries on multiple keys
Also less common in open-source databases

R-tree indexes — to make spatial queries very fast
With ubiquity of geospatial data, quite common these days

B*-Tree Indexes

A very widely used ordered index storage format

Manages a balanced tree structure
Every path from root to leaf is the same length

Generally remains efficient for selects, even with inserts and
deletes occurring

Can consume significant space, since individual nodes
can be up to half empty!

Index updates for insert and delete can be slow...
Tree structure must be updated properly

Performance benefits on queries more than outweigh
these costs!

B™-Tree Indexes (2)

Each tree node has up to n children
Simplification: n is fixed for the entire tree

Each node stores n pointers and n — 1 values

P, K, P, K, P4 e P, K1 P,

K; are search-key values, P; are record pointers
Values are kept in sorted order: if i <|then K; <K;
All nodes (except root) must be at least half full
Size of n depends on block size, search-key size, and
record pointer size, but it is usually large!
Example: 4KB blocks, 4B record pointers, 4B integer keys
n will be >500! B*-tree indexes are shallow, broad trees.

B*-Tree Leaf Nodes

For leaf nodes:

P, K, P, K4 P P,_1 K,_1 P,
\ v J -/
P; points to record(s) with key value K; P, points to next leaf in sequence

(i.e. leaf whose first value is K,)

Pointer P; refers to record(s) with search-key value K.

If search key is a candidate key, P, points to the record with
key value K.

If search key isn’t a candidate key, P; points to a collection
of pointers to all records with key value K.
No two leaves have overlapping ranges
Leaves can be arranged in sequential order
Pointer P, points to the next leaf in sequential order

B*-Tree Non-Leaf Nodes

For non-leaf nodes:

P, K, P, K, P, P._, K, _i P,
P, is subtree with P, is subtree with key values K, ; < K <K; P, is subtree with
values < K values > K, ;

All pointers P, refer to other B™-tree nodes
For 1 <i<n:

Pointer P; points to subtree containing search-key values
of at least K., but less than K.

Fori=1ori = n;:

Pointer P, points to subtree containing search-key values less
than K,

Pointer P, points to subtree containing search-key values at
least K, ;

Example B™-Tree

A simple B'-tree, withn = 3

Perryridge

r

Mianus

K

Redwood

Brighton

'\'

Downtown

Mianus

Perryridge

S5

Redwood

Round Hill

Queries are straightforward

Inserts may require one or more nodes to be split

Deletes may require one or more nodes to be merged

B™-Trees and String Keys

String columns are problematic for indexing

Frequently specified to have large /variable-size values

Large keys reduce branching factor of each node,
increasing tree depth and access cost

Large keys can also interfere with tree restructuring

Simple solution: don’t use the entire string! ©
Can use prefix compression technique
Non-leaf nodes only store a prefix of the search string

Size of prefix must be large enough to distinguish
reasonably well between values in each subtree

Otherwise, can’t effectively narrow down records to consider

Indexes and Queries

Indexes provide an alternate access path to specific
records in a table

If looking for a specific value or range of values, use the index to
find where to start looking in the table file
Query planner looks for indexes on relevant columns
when optimizing your query Execution Plan:

O-c:ccounf_id=A-59 1

« index scan

Query from before:
SELECT * FROM account
WHERE account id='A-591'; account

If there is an index on account_id column, planner can
use an index scan instead of a file scan

Execution plan is annotated with these kinds of details

Keys and Indexes

Databases create many indexes automatically

DB will create an index on the primary key columns, and
sometimes on foreign key columns too

Makes it much faster for DB to enforce key and referential
integrity constraints

Many of your queries already use these indexes!

Lookups on primary keys, and joins on primary /foreign key
columns

Sometimes queries use columns that don’t have indexes
e.g. SELECT * FROM account WHERE balance >= 3000;

How do we tell what indexes the DB uses for a query?

How do we create additional indexes on our tables?

EXPLAIN Yourself

Most databases have an EXPLAIN-type command

Performs query planning and optimization phases,
then outputs details about the execution plan

Reports, among other things, what indexes are used

MySQL EXPLAIN command:
EXPLAIN SELECT * FROM account
WHERE account id = 'A 591"

e e e e et e e e e T e +-———-- e +
| id | select_type | table | type | possible keys | key | key len | ref | rows | Extra |
e e L L e P et - $-—————- e e L e T et e +-———-- e +
| 1 | SIMPLE | account | const | PRIMARY | PRIMARY | 17 | const | 1| |
e e L L e P et - $-—————- e e L e T et e +-———-- e +

This query uses primary key index to look up the record
MySQL knows that the result will be one row, or no rows

MySQL EXPLAIN (2)

More interesting result with a different account ID:

EXPLAIN SELECT * FROM account
WHERE account id = 'A-000';

e $-—————- +--=-- e T +
| id | select_type | table | ... | Extra |
e $-—————- +--=-- e e +
| 1 | SIMPLE | NULL | . | Impossible WHERE noticed after reading const tables |
e $-—————- +--=-- e T +

MySQL planner uses the primary key index to discern that
the specified ID doesn’t appear in the account tablel!

Another query against account:

EXPLAIN SELECT * FROM account
WHERE balance >= 3000;

e $o—m - +-————- domm e +--———- 4o $-——--- +--———- e e e T +
| id | select_type | table | type | possible keys | key | key len | ref | rows | Extra |
e $o—m - +-————- domm e +--———- 4o $-——--- +--———- e e e T +
| 1 | SIMPLE | account | ALL | NULL | NULL | NULL | NULL | 60 | Using where |
e $o—m - +-————- domm e +--———- 4o $-——--- +--———- e e e T +

No index available to use for this column

Adding Indexes to Tables

If many queries reference columns that don’t have
indexes, and performance becomes an issue:

Create additional indexes on a table to help the DB
Usually specified with CREATE INDEX commands

To speed up queries on account balances:
CREATE INDEX idx balance ON account (balance);

Database will create the index file and populate it from the
current contents of the account relation

(this could take some time for really large tables...)
Can also create multi-column indexes

Can specify many options, such as the index type
Virtually all databases create BTREE indexes by default

Adding Indexes to Tables (2)

MyYSQL allows you to specify indexes in the
CREATE TABLE command itself...

...nhot many other DBs support this, so it's not portable.

Any drawbacks to putting an index on account
balances?

It's a bank. Account balances change all the time.

Will definitely incur a performance penalty on updates
(but, it probably won'’t be terribly substantial...)

Verifying Index Usage

Very important to verify that your new index is
actually being used!

If your query doesn’t use the index, best to get rid of itl

EXPLAIN SELECT * FROM account
WHERE balance >= 3000

e e L e +-————- e - +-—-——- +-————- Fommmm - +
| id | select_type | table | type | possible keys | key | key len | ref | rows | Extra |
e - +-————- o - +-————- - +-—-——- +-————- Fommmm - +
| 1 | SIMPLE | account | ALL | idx_balance | NULL | NULL | NULL | 60 | Using where |
e e e et T e e et +-————- Fommmm - +

Hmm, MySQL doesn’t use ’rhe mdex for this query.

If other expensive queries use it, makes sense to keep it
(e.g. the rank query would use this index)

Otherwise, just get rid of it and keep your updates fast

Indexes on Large Values

Large keys seriously degrade index performance
Example: B-trees and B™-trees

Biggest benefit is very large branching factor of each node

Large key-values will dramatically reduce the branching
factor, deepening the tree and increasing 1O costs

Can specify indexes on only the first N

characters/bytes of a string/LOB value

CREATE INDEX idx name ON customer (cust name(5));
Only uses first five characters for customer-name index

If most values differ in first N bytes, index will be much
smaller and faster for both updates and queries

If values don’t differ much, index won’t do much good

Indexes and Performance Tuning

Adding indexes to a schema is a common task in
many database projects

As a performance-tuning task, usually occurs after
DB contains some data, and queries are slow
Always avoid premature optimization!
Always find out what the DB is doing first!

Indexes impose an overhead in both space and time

Speeds up selects, but slows down all modifications

Always need to verify that a new index is actually
being used by the database. If not, get rid of it

Administrivia

Next time: SQL Query Evaluation |l

Overview of how most relational algebra operators
are implemented, including common-case optimizations

Midterm time is a-comin’...
Next Monday, November 5, is midterm review
Come to class, watch the video, get the slides, whatever.
Midterm will be available towards end of next week

No assignment due the week of the midterm

