
DATABASE PERFORMANCE
AND INDEXES
CS121: Relational Databases
Fall 2018 – Lecture 11

Database Performance

¨ Many situations where query performance needs to be
improved
¤ e.g. as data size grows, query performance degrades and

tuning needs to be performed
¤ Extreme cases: data warehouses with millions or billions of

rows to aggregate and summarize
¨ To optimize queries effectively, we must understand

what the database is doing under the hood
¤ e.g. “Why are correlated subqueries slow to evaluate?”

n Because an inner query must be evaluated for each row
considered by the outer query. Thus, a good idea to avoid!

2

Database Performance (2)

¨ Next two lectures will explore how most databases
evaluate queries
¤ Specifically, how are relational algebra operations

implemented, and what optimizations do they employ?
¤ As usual, there are always exceptions! (e.g. MySQL)
¤ Important to be aware of, so you understand each DBMS’

limitations
¨ Today, will concentrate more on data storage and

access methodologies
¨ Next time, explore relational algebra implementations

¤ These are built on top of topics covered today

3

Disk Access!

¨ First rule of database performance:
Disk access is the most expensive thing databases do!

¨ Accessing data in memory can be 10-100ns
¨ Accessing data on disk can be up to 10s of ms

¤ That’s 5-6 orders of magnitude difference!
¤ Even solid-state drives are 10s-100s of μs (1000x slower)

¨ Unfortunately, disk IO is usually unavoidable
¤ Usually the data simply doesn’t fit into memory…
¤ Plus, the data needs to be persistent for when the DB is shut

down, or when the server crashes, etc.
¨ DBs work very hard to minimize the amount of disk IO

4

Planning and Optimization

¨ When the query planner/optimizer gets your query:
¤ It explores many equivalent plans, estimating their cost

(primarily IO cost), and chooses the least expensive one
¤ Considers many options in evaluating your query:

n What access paths does it have to the data you want?
n What algorithms can it use for selects, joins, sorting, etc?
n What is the nature of the data itself?

n i.e. statistics generated by the database, directly from your data

¨ The planner will do the best it can… J
¤ Sometimes it can’t find a fast way to run your query
¤ Also depends on sophistication of the planner itself

n e.g. if planner doesn’t know how to optimize certain queries, or if
executor doesn’t implement very advanced algorithms

5

Table Data Storage

¨ Databases usually store each table in its own file
¨ File IO is performed in fixed-size blocks or pages

¤ Common page size is 4KB or 8KB; can often tune this value
¤ Disks can read/write entire pages faster than small amounts

of bytes or individual records
¤ Also makes it much easier for the database to manage

pages of data in memory
n The buffer manager takes care of this very complicated task

¨ Each block in the file contains some number of records
¨ Frequently, individual records can vary in size…

¤ (due to variable-size types: VARCHAR, NUMERIC, etc.)

6

Table Data Storage (2)

¨ Individual blocks have internal structure, to manage:
¤ Records that vary in size
¤ Records that are deleted
¤ Where and how to add a new record to the block, if

there is space for it

¨ The table file itself also has internal structure:
¤ Want to make sure common operations are fast!

n “I want to insert a new row. Which block has space for it, or
do I have to allocate a new block at the end of the file?”

7

Record Organization

¨ Should table records be organized in a specific way?
¨ Example: records are kept in sorted order, using a key

¤ Called a sequential file organization
¤ Would be much faster to find records based on the key
¤ Would be much faster to do range queries as well
¤ Definitely complicates the storage of records!

n Can’t predict order records will be added or deleted
n Often requires periodic reorganization to ensure that

records remain physically sorted on the disk

¨ Could also hash records based on some key
¤ Called a hashing file organization
¤ Again, speeds up access based on specific values
¤ Similar organizational challenges arise over time…

8

Record Organization (2)

¨ The most common file organization is random! J
¤ Called a heap file organization
¤ Every record can be placed anywhere in the table file,

wherever there is space for the record
¤ Virtually all databases provide heap file organization
¤ Usually perfectly sufficient, except for most demanding

applications

9

Heap Files and Queries

¨ Given that DBs normally use heap file organization,
how does the DB evaluate a query like:

SELECT * FROM account
WHERE account_id = 'A-591';

¨ A simple approach:
¤ Search through the entire table file, looking for all rows

where value of account_id is A-591
¤ This is called a file scan, for obvious reasons

¨ This will be slow, but it’s all we can do so far…
¨ Need a way to optimize accesses like this

10

Table Indexes

¨ Most queries use a small number of rows from a table
¤ Need a faster way to look up those values, besides scanning

through entire data file
¨ Approach: build an index on the table

¤ Each index is associated with a specific column or set of
columns in the table, called the search key for the index

¤ Queries involving those columns can often be made much
faster by using the index on those columns

¤ (Queries not using those columns will still use a file scan L)
¨ Index is always structured in some way, for fast lookups
¨ Index is much smaller than the actual table itself

¤ Much faster to search within the index (fewer IO operations)

11

Index Characteristics

¨ Many different varieties of indexes, with different
access characteristics
¤ What kind of lookup is most efficient for the kind of index?
¤ How costly is it to find a particular item, or a set of items?

n e.g. a query retrieving records with a range of values
¨ Indexes do impose both a time and space overhead

¤ Indexes must be kept up to date! Frequently, they slow
down update operations, while making selects faster.

¨ Different kinds of indexes impose different overheads:
¤ How much time to add a new item to the index?
¤ How much time to delete an item from the index?
¤ How much additional space does the index take up?

12

Index Characteristics (2)

¨ Two major categories of indexes:
¤ Ordered indexes keep values in a sorted order
¤ Hash indexes divide values into bins, using a hash function

¨ Many variations within these two categories!
¨ Example: dense vs. sparse indexes

¤ A dense index includes every single value from the source
column(s). Faster lookups, but a larger space overhead.

¤ A sparse index only includes some of the values. Lookups
require searching more records, but index is smaller.

¨ The indexes we are covering today are dense indexes
¤ Heap files are in random order, so an index won’t help us very

much unless it includes every value from the table

13

Index Implementations

¨ Indexes are usually stored in files separate from the
actual table data
¤ Indexes are also read/written as blocks

n (Same reasons as before…)

¨ Indexes use record pointers to reference specific
records in the table file
¤ Simply consists of the block number the record is in, and

the offset of the record within that block
¨ Index records contain values (or hashes), and one or

more pointers to table records with those values

14

Index Implementations (2)

¨ Virtually all databases provide ordered indexes, using
some kind of balanced tree structure
¤ B+-tree and B-tree indexes, typically referred to as “btree”

indexes
¨ Some databases also provide hash indexes

¤ More complex to manage than ordered indexes, so not very
common in open-source databases

¨ Several other kinds of indexes as well:
¤ Bitmap indexes – to speed up queries on multiple keys

n Also less common in open-source databases
¤ R-tree indexes – to make spatial queries very fast

n With ubiquity of geospatial data, quite common these days

15

B+-Tree Indexes

¨ A very widely used ordered index storage format
¨ Manages a balanced tree structure

¤ Every path from root to leaf is the same length
¤ Generally remains efficient for selects, even with inserts and

deletes occurring
¨ Can consume significant space, since individual nodes

can be up to half empty!
¨ Index updates for insert and delete can be slow…

¤ Tree structure must be updated properly
¨ Performance benefits on queries more than outweigh

these costs!

16

B+-Tree Indexes (2)

¨ Each tree node has up to n children
¤ Simplification: n is fixed for the entire tree

¨ Each node stores n pointers and n – 1 values

¤ Ki are search-key values, Pi are record pointers
¤ Values are kept in sorted order: if i < j then Ki < Kj
¤ All nodes (except root) must be at least half full

¨ Size of n depends on block size, search-key size, and
record pointer size, but it is usually large!
¤ Example: 4KB blocks, 4B record pointers, 4B integer keys
¤ n will be >500! B+-tree indexes are shallow, broad trees.

P1 P2 PnK1 K2 P3 Kn-1Pn-1…

17

B+-Tree Leaf Nodes

¨ For leaf nodes:

¤ Pointer Pi refers to record(s) with search-key value Ki
¤ If search key is a candidate key, Pi points to the record with

key value Ki
¤ If search key isn’t a candidate key, Pi points to a collection

of pointers to all records with key value Ki
¨ No two leaves have overlapping ranges

¤ Leaves can be arranged in sequential order
¤ Pointer Pn points to the next leaf in sequential order

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…

Pi points to record(s) with key value Ki Pn points to next leaf in sequence
(i.e. leaf whose first value is Kn)

18

B+-Tree Non-Leaf Nodes

¨ For non-leaf nodes:

¤ All pointers Pi refer to other B+-tree nodes
¨ For 1 < i < n:

¤ Pointer Pi points to subtree containing search-key values
of at least Ki-1, but less than Ki

¨ For i = 1 or i = n:
¤ Pointer P1 points to subtree containing search-key values less

than K1
¤ Pointer Pn points to subtree containing search-key values at

least Kn-1

P1 P2 PnK1 K2 P3 Kn – 1Pn – 1…

Pi is subtree with key values Ki-1 ≤ K < KiP1 is subtree with
values < K1

Pn is subtree with
values ≥ Kn-1

19

Example B+-Tree

¨ A simple B+-tree, with n = 3

¨ Queries are straightforward
¨ Inserts may require one or more nodes to be split
¨ Deletes may require one or more nodes to be merged

Brighton Downtown Mianus Redwood Round HillPerryridge

Mianus Redwood

Perryridge

20

B+-Trees and String Keys

¨ String columns are problematic for indexing
¤ Frequently specified to have large/variable-size values
¤ Large keys reduce branching factor of each node,

increasing tree depth and access cost
¤ Large keys can also interfere with tree restructuring

¨ Simple solution: don’t use the entire string! J
¤ Can use prefix compression technique
¤ Non-leaf nodes only store a prefix of the search string
¤ Size of prefix must be large enough to distinguish

reasonably well between values in each subtree
n Otherwise, can’t effectively narrow down records to consider

21

Indexes and Queries

¨ Indexes provide an alternate access path to specific
records in a table
¤ If looking for a specific value or range of values, use the index to

find where to start looking in the table file

¨ Query planner looks for indexes on relevant columns
when optimizing your query

¨ Query from before:
SELECT * FROM account
WHERE account_id='A-591';

¨ If there is an index on account_id column, planner can
use an index scan instead of a file scan
¤ Execution plan is annotated with these kinds of details

σaccount_id=A-591

account

Execution Plan:

index scan

23

Keys and Indexes

¨ Databases create many indexes automatically
¤ DB will create an index on the primary key columns, and

sometimes on foreign key columns too
¤ Makes it much faster for DB to enforce key and referential

integrity constraints
¨ Many of your queries already use these indexes!

¤ Lookups on primary keys, and joins on primary/foreign key
columns

¨ Sometimes queries use columns that don’t have indexes
¤ e.g. SELECT * FROM account WHERE balance >= 3000;

¨ How do we tell what indexes the DB uses for a query?
¨ How do we create additional indexes on our tables?

24

EXPLAIN Yourself

¨ Most databases have an EXPLAIN-type command
¤ Performs query planning and optimization phases,

then outputs details about the execution plan
¤ Reports, among other things, what indexes are used

¨ MySQL EXPLAIN command:
EXPLAIN SELECT * FROM account
WHERE account_id = 'A-591';

¤ This query uses primary key index to look up the record
¤ MySQL knows that the result will be one row, or no rows

+----+-------------+---------+-------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+-------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | account | const | PRIMARY | PRIMARY | 17 | const | 1 | |
+----+-------------+---------+-------+---------------+---------+---------+-------+------+-------+

25

MySQL EXPLAIN (2)

¨ More interesting result with a different account ID:
EXPLAIN SELECT * FROM account
WHERE account_id = 'A-000';

¤ MySQL planner uses the primary key index to discern that
the specified ID doesn’t appear in the account table!

¨ Another query against account:
EXPLAIN SELECT * FROM account
WHERE balance >= 3000;

¤ No index available to use for this column

+----+-------------+-------+-----+---+
| id | select_type | table | ... | Extra |
+----+-------------+-------+-----+---+
| 1 | SIMPLE | NULL | ... | Impossible WHERE noticed after reading const tables |
+----+-------------+-------+-----+---+

+----+-------------+---------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | account | ALL | NULL | NULL | NULL | NULL | 60 | Using where |
+----+-------------+---------+------+---------------+------+---------+------+------+-------------+

26

Adding Indexes to Tables

¨ If many queries reference columns that don’t have
indexes, and performance becomes an issue:
¤ Create additional indexes on a table to help the DB

¨ Usually specified with CREATE INDEX commands
¨ To speed up queries on account balances:

CREATE INDEX idx_balance ON account (balance);
¤ Database will create the index file and populate it from the

current contents of the account relation
n (this could take some time for really large tables…)

¨ Can also create multi-column indexes
¨ Can specify many options, such as the index type

¤ Virtually all databases create BTREE indexes by default

27

Adding Indexes to Tables (2)

¨ MySQL allows you to specify indexes in the
CREATE TABLE command itself…
¤ …not many other DBs support this, so it’s not portable.

¨ Any drawbacks to putting an index on account
balances?
¤ It’s a bank. Account balances change all the time.
¤ Will definitely incur a performance penalty on updates

(but, it probably won’t be terribly substantial…)

28

Verifying Index Usage

¨ Very important to verify that your new index is
actually being used!
¤ If your query doesn’t use the index, best to get rid of it!
EXPLAIN SELECT * FROM account
WHERE balance >= 3000;

¨ Hmm, MySQL doesn’t use the index for this query.
¤ If other expensive queries use it, makes sense to keep it

(e.g. the rank query would use this index)
¤ Otherwise, just get rid of it and keep your updates fast

+----+-------------+---------+------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+---------+------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | account | ALL | idx_balance | NULL | NULL | NULL | 60 | Using where |
+----+-------------+---------+------+---------------+------+---------+------+------+-------------+

29

Indexes on Large Values

¨ Large keys seriously degrade index performance
¨ Example: B-trees and B+-trees

¤ Biggest benefit is very large branching factor of each node
¤ Large key-values will dramatically reduce the branching

factor, deepening the tree and increasing IO costs
¨ Can specify indexes on only the first N

characters/bytes of a string/LOB value
CREATE INDEX idx_name ON customer (cust_name(5));
¤ Only uses first five characters for customer-name index
¤ If most values differ in first N bytes, index will be much

smaller and faster for both updates and queries
¤ If values don’t differ much, index won’t do much good

30

Indexes and Performance Tuning

¨ Adding indexes to a schema is a common task in
many database projects

¨ As a performance-tuning task, usually occurs after
DB contains some data, and queries are slow
¤ Always avoid premature optimization!
¤ Always find out what the DB is doing first!

¨ Indexes impose an overhead in both space and time
¤ Speeds up selects, but slows down all modifications

¨ Always need to verify that a new index is actually
being used by the database. If not, get rid of it!

31

Administrivia

¨ Next time: SQL Query Evaluation II
¤ Overview of how most relational algebra operators

are implemented, including common-case optimizations

¨ Midterm time is a-comin’…
¤ Next Monday, November 5, is midterm review
¤ Come to class, watch the video, get the slides, whatever.
¤ Midterm will be available towards end of next week
¤ No assignment due the week of the midterm

32

