ADVANCED SQL DDL



Advanced SQL DDL

Last time, covered stored procedures and user-defined
functions (UDFs)

Relatively simple but powerful mechanism for extending
capabilities of a database

Most databases support these features (in different ways, of
course...)

Today, will cover three more advanced features of SQL
data definition

Triggers

Materialized views (briefly)

Security constraints in databases



Triggers

Triggers are procedural statements executed
automatically when a database is modified

Usually specified in procedural SQL language, but other
languages are frequently supported

Example: an audit log for bank accounts

Every time a balance is changed, a trigger can update an
“audit log” table, storing details of the change

e.g. old value, new value, who changed the balance, and why
Why not have applications update the log directly?
Could easily forget to update audit log for some updates!

Or, a malicious developer might leave a back-door in an
application, allowing them to perform unaudited operations



Triggers (2)

If the database handles audit-log updates automatically
and independently:

Application code doesn’t become more complex by introducing
audit functionality

Audit log will be a more trustworthy record of modifications to
bank account records

Triggers are used for many other purposes, such as:
Preventing invalid changes to table data
Automatically updating timestamp values, derived attributes, etc.

Executing business rules when data changes in specific ways

e.g. place an order for more parts when current inventory dips below
a specific value

Replicating changes to another table, or even another database



Trigger Mechanism

DB trigger mechanism must keep track of two things:

When is the trigger actually executed?
The event that causes the trigger to be considered

The condition that must be satisfied before the trigger

will execute

(Not every database requires a condition on triggers...)
What does the trigger do when it’s executed?

The actions performed when the trigger executes

Called the event-condition-action model for triggers




When Triggers Execute

Databases usually support triggering on inserts,
updates, and deletes
Can’t trigger on selects

Implication: Can’t use triggers to audit or prevent read-
accesses to a database (bummer)

Commercial databases also support triggering on many
other operations
Data-definition operations (create /alter /drop table, etc.)
Login/logout of specific users
Database startup, shutdown, errors, etc.

For simplicity, will limit discussion to DML triggers only



When Triggers Execute

Can typically execute the trigger before or after the
triggering DML event

Usually, DDL/user /database triggering events only run the
trigger after the event (pretty obvious)

“Before” triggers can abort the DML operation, if necessary
Some DBs also support “instead of” triggers

Execute trigger instead of performing the triggering operation
Triggers are row-level triggers or statement-level triggers

A row-level trigger is executed for every single row that is
modified by the statement

(...as long as the row satisfies the trigger condition, if specified...)

A statement-level trigger is executed once for the entire
statement




Trigger Data

Row-level triggers can access the old and new
version of the row data, when available:

Insert triggers only get the new row data
Update triggers get both the old and new row data
Delete triggers only get the old row data

Triggers can also access and modify other tables

e.g. to look up or record values during execution



Trigger Syntax

SQL:1999 specifies a syntax for triggers

Discussed in the textbook, section 5.3

Again, wide variation from vendor to vendor
Oracle and DB2 are similar to SQL99, but not identical

(triggers always seem to involve vendor-specific features)
SQLServer, Postgres, MySQL all have different features

Constraints on what triggers can do also vary widely
from vendor to vendor

Will focus on MySQL trigger syntax, functionality



Trigger Example: Bank Overdrafts

Want to handle overdrafts on bank accounts

If an update causes a balance to go negative:
Create a new loan with same ID as the account number

Set the loan balance to the negative account balance

(...the account balance went negative...)

Need to update borrower table as well!

Needs to be a row-level trigger, executed before
or after updates to the account table

If database supports trigger conditions, only trigger on
updates when account balance < 0



SQL99 /Oracle Trigger Syntax

Book uses SQL:1999 syntax, similar to Oracle /DB2

CREATE TRIGGER trg overdraft AFTER UPDATE ON account
REFERENCING NEW ROW AS nrow

FOR EACH ROW WHEN nrow.balance < 0
BEGIN ATOMIC
INSERT INTO loan VALUES (nrow.account number,

nrow.branch name,
-nrow.balance) ;

INSERT INTO borrower
(SELECT customer name, account number
FROM depositor AS d
WHERE nrow.account number = d.account number) ;
UPDATE account AS a SET balance = 0

WHERE a.account_number = nrow.account_number;
END



MyYSQL Trigger Syntax

MySQL has more limited trigger capabilities

Trigger execution is only governed by events, not conditions
Workaround: Enforce the condition within the trigger body

Old and new rows have fixed names: OLD, NEW
Change the overdraft example slightly:

Also apply an overdraft fee!l “Kick ‘em while they’re down!”

What if the account is already overdrawn?

Loan table will already have a record for overdrawn
account...

Borrower table will already have a record for the loan, too!
Previous version of trigger would cause duplicate key error!



MySQL INSERT Enhancements

MySQL has several enhancement to the INSERT command
(Most databases provide similar capabilities)

Try to insert a row, but if key attributes are same as another

row, simply don’t perform the insert:

INSERT IGNORE INTO tbl ...;

Try to insert a row, but if key attributes are same as another

row, update the existing row:

INSERT INTO tbl ... ON DUPLICATE KEY
UPDATE attrl = valuel, ...;

Try to insert a row, but if key attributes are same as another
row, replace the old row with the new row

If key is not same as another row, perform a normal INSERT
REPLACE INTO tbl ...;



MyYSQL Trigger Syntax (2)

CREATE TRIGGER trg overdraft BEFORE UPDATE ON account FOR EACH ROW
BEGIN

DECLARE overdraft fee NUMERIC(12, 2) DEFAULT 30;

DECLARE overdraft amt NUMERIC (12, 2);

-- If an overdraft occurred then handle by creating/updating a loan.
IF NEW.balance < 0 THEN

-- Remember that NEW.balance is negative.

SET overdraft amt = overdraft fee - NEW.balance;

INSERT INTO loan (loan number, branch name, amount)
VALUES (NEW.account number, NEW.branch name, overdraft amt)
ON DUPLICATE KEY UPDATE amount = amount + overdraft amt;

INSERT IGNORE INTO borrower (customer name, loan_ number)
SELECT customer name, account number FROM depositor
WHERE depositor.account number = NEW.account number;

SET NEW.balance = 0;
END IF;
END;



Trigger Pitfalls

Triggers may or may not execute when you expect...

e.g. MySQL insert-triggers fire when data is bulk-loaded into the
DB from a backup file

Databases usually allow you to temporarily disable triggers
e.g. truncating a table usually does not fire delete-triggers

If a trigger for a commonly performed task runs slowly, it
will kill DB performance

If a trigger has a bug in it, it may abort changes to tables
at unexpected times
The actual cause of the issue may be difficult to discern

Triggers can write to other tables, which may also have
triggers on them...

Not hard to create an infinite chain of triggering events



Alternatives to Triggers

Triggers can be used to implement many complex tasks

Example: Can implement referential integrity with
triggers!
On all inserts and updates to referencing table, ensure that
foreign-key column value appears in referenced table

If not, abort the operation!

On all updates and deletes to referenced table, ensure that
value doesn’t appear in referencing table
If it does, can abort the operation, or cascade changes to the
referencing relation, etc.

This is definitely slower than the standard mechanism ©



Alternatives to Triggers (2)

Can you use stored procedures instead?
Stored procedures usually have fewer limitations than
triggers

Stored procs can take more detailed arguments, return values to
indicate success/failure, have out-params, etc.

Can perform more sophisticated transaction processing

Trigger support is also very vendor-specific, so either
implementation choice will have this limitation

Typically, triggers are used in very limited ways

Update “row version” or “last modified timestamp” values in
modified rows

Simple operations that don’t require a great deal of logic
Database replication (sometimes)



Triggers and Summary Tables

Triggers are sometimes used to compute summary
results when detail records are changed

Example: a table of branch summary values

e.g. (branch name, total_balances, total_loans)

Motivation:

If these values are used frequently in queries, want to
avoid overhead of recomputing them all the time

ldea: update this summary table with triggers

Anytime changes are made to account or loan,
update the summary table based on the changes



Materialized Views

Some databases provide materialized views, which

implement such functionality

Simple views usually treated as named SQL queries
i.e. a derived relation with the specified definition

When a query refers to a simple view, database

substitutes view’s definition directly into the query
Benefit: allows optimization of the entire query

Drawback: if many queries reference a simple view,
the same values will be computed again and again...



Materialized Views (2)

Materialized views actually create a new table,
populated by the results of the view definition

Quueries can use values in the materialized view over
and over, without recomputing

Database can perform optimized lookups against the
materialized view, e.g. by using indexes

Just one little problem:
What if the tables referenced by the view change?
Need to recompute contents of the materialized view!

Called view maintenance




Materialized View Maintenance

If a database doesn’t support materialized views:

Can perform view maintenance with triggers on the
referenced tables

A very manual approach, but definitely an option for
databases that don’t support materialized views

e.g. Postgres, MySQL
Databases with materialized views will perform view
maintenance automatically
...much simpler than creating a bunch of triggers!
Typically provide many options, such as:

Immediate view maintenance — update contents after any change
Deferred view maintenance — update view on a periodic schedule



Materialized View Maintenance (2)

A simple approach for updating materialized views:
Recompute entire view from scratch after every change!

Very expensive approach, especially if backing tables are
changed frequently

A better approach: incremental view maintenance

Using the view definition and the specific data changes
applied to the backing tables, only update those parts of
the view that are actually affected

Again, DBs with materialized views will do this for you

Can also do incremental view maintenance manually
with triggers, but it can be complicated...



Authentication and Authorization

Security systems must provide two major features

Authentication (aka “A1”, “AuthN”, “Au”):
“ am who | say | am.”

Authorization (aka “A2”, “AuthZ”, “Az”):

“'am allowed to do what | want to do.”

Each component is useless without the other



User Authorization

SQL databases perform authentication of users
Must specify username and password when connecting

Most DBMSes provide secure connections (e.g. SSL), etc.

SQL provides an authorization mechanism for various
operations

Different operations require different privileges in the
database

Users can be granted privileges to perform necessary
operations

Privileges can also be revoked, to limit available user
operations



Basic SQL Privileges

Most fundamental set of privileges:
SELECT, INSERT, UPDATE, DELETE
Allows (or disallows) user to perform specified action

User is granted access to perform specified operations
on particular relations

Simple syntax:
GRANT SELECT ON account TO banker;

User “banker” is allowed to issue queries against the
account relation



Granting Privileges

Can grant multiple privileges to multiple users

GRANT SELECT, UPDATE ON account
TO banker, manager;

GRANT INSERT, DELETE ON account
TO manager;

Bankers can view and modify account balances
Only managers can create or remove accounts

Must specify each table individually



All Users, All Privileges

Can specify PUBLIC to grant privileges to all users

Also includes users added to DBMS in future
GRANT SELECT ON promotions TO PUBLIC;

Can specify ALL PRIVILEGES to grant all

privileges to a user

GRANT ALL PRIVILEGES ON account
TO admin lackey;



Column-Level Privileges

For INSERT and UPDATE privileges, can optionally
constrain to specific columns of relations
UPDATE: can only update specified columns

INSERT: can only insert into specified columns

Example: employee relation
Employees can only modify their contact info

Allow HR to manipulate all aspects of employees

GRANT UPDATE (home phone, email) ON employee
TO emp user;

GRANT INSERT, UPDATE ON employee TO hr user;



Revoking Privileges

Can revoke privileges just as easily:

REVOKE privl, ... ON relation
FROM userl, ...;

Can specify a list of privileges, and a list of users

With INSERT and UPDATE, can also revoke
privileges on individual columns



Privileges and Views

Users can be granted privileges on views
May differ from privileges on underlying tables

When accessing a view:

Privileges on the view are checked, not the privileges on
underlying tables

Example: employee relation
Only HR can view all employee data

Employees can only view contact details



Example View Privileges

0 SQL commands:
-—- Start by disallowing all access to employee
REVOKE ALL PRIVILEGES ON employee TO PUBLIC;

-—- Only allow hr user to access employee relation
GRANT ALL PRIVILEGES ON employee TO hr user;

-- View for "normal" employees to access
CREATE VIEW directory AS
SELECT emp name, email, office phone
FROM employee;
GRANT SELECT ON directory TO emp user;
1 When employees issue queries against directory, DB
only checks directory privileges



View Processing

As stated before, databases usually treat views as

named SQL queries
Database substitutes view’s definition directly into
queries that reference the view

SQL engine performs authorization before this

process oCccurs
DB verifies access permissions on referenced views, and
then substitutes view definitions into the query plan
Allows DB to support different access constraints on
views, vs. their underlying tables



Other Privileges

Many other privileges in SQL

EXECUTE grants privilege to execute a function or
stored procedure

CREATE grants privilege to create tables, views, other
schema objects

REFERENCES grants privilege to create foreign key
or CHECK constraints

Most DBMSes provide several others, too
PostgreSQL has 11 permissions; MySQL has 27
Oracle has nearly 200 different permissions!



REFERENCES Privilege

Foreign key constraints limit what users can do

Rows in referencing relation limit update and delete
operations in referenced relation

A user adding a foreign key constraint can disallow these
operations for all users!

Must have the REFERENCES privilege to create
foreign keys

REFERENCES requires both a relation and some
attributes to be specified

May create foreign keys involving those attributes



Passing On Privileges

Users can’t automatically grant their own privileges to
other users

Must explicitly allow this:
GRANT SELECT ON directory TO emp user
WITH GRANT OPTION;

WITH GRANT OPTION clause allows privileges to be passed
on

Can lead to confusing situations:

If alex grants a privilege to bob, then alex has that privilege
revoked, should it affect bob?

If alex and bob both grant a privilege to carl, then alex
revokes that privilege, does carl still have the privilege?

Typically, databases implement simple solutions to these
kinds of problems



Authorization Notes

SQL authorization mechanism is very rich

Still has a number of shortcomings

Can’t grant/revoke privileges on per-tuple basis

e.g. “l can see only the rows in the account relation
corresponding only to my bank accounts.”

(If there were SELECT triggers, we could implement this...)
(Or, you could emulate this with table-returning functions...)

Significant variations in security models implemented by
various databases



Authorization Notes (2)

Most applications don’t rely heavily on DB authorization

Application can implement a broad range of authorization
schemes, but implementation complexity increases

Web applications are primary example of this

Database access layer typically has only one user, with full
access and modification privileges

Application performs authentication/authorization itself

Access-checks are sprinkled throughout application code;
easy to introduce security holes! (e.g. PHP applications)

App-servers with declarative security specifications greatly
mitigate this problem (e.g. JavaEE platform security)



Authorization Notes (3)

Best to employ SQL auth mechanism in some way...
Declarative security specifications
Database simply won’t allow access to privileged data, or
unauthorized changes to schema

For large, important database apps, definitely want

to explore using SQL authorization features

At the least, create a DBMS user for each user-role that
application supports

An “admin” user for administrators in the application, with
fewer restrictions

A very restricted “common user” for end-users
Greatly reduces the dangers of SQL-based attacks




Next Time

Last major topic for SQL data definition: indexes

Used to facilitate much faster database lookups

Will also briefly discuss DB storage mechanisms,
and how this affects query performance



