
ADVANCED SQL DDL
CS121: Relational Databases
Fall 2018 – Lecture 10

Advanced SQL DDL

¨ Last time, covered stored procedures and user-defined
functions (UDFs)
¤ Relatively simple but powerful mechanism for extending

capabilities of a database
¤ Most databases support these features (in different ways, of

course…)
¨ Today, will cover three more advanced features of SQL

data definition
¤ Triggers
¤ Materialized views (briefly)
¤ Security constraints in databases

2

Triggers

¨ Triggers are procedural statements executed
automatically when a database is modified
¤ Usually specified in procedural SQL language, but other

languages are frequently supported
¨ Example: an audit log for bank accounts

¤ Every time a balance is changed, a trigger can update an
“audit log” table, storing details of the change
n e.g. old value, new value, who changed the balance, and why

¨ Why not have applications update the log directly?
¤ Could easily forget to update audit log for some updates!
¤ Or, a malicious developer might leave a back-door in an

application, allowing them to perform unaudited operations

3

Triggers (2)

¨ If the database handles audit-log updates automatically
and independently:
¤ Application code doesn’t become more complex by introducing

audit functionality
¤ Audit log will be a more trustworthy record of modifications to

bank account records
¨ Triggers are used for many other purposes, such as:

¤ Preventing invalid changes to table data
¤ Automatically updating timestamp values, derived attributes, etc.
¤ Executing business rules when data changes in specific ways

n e.g. place an order for more parts when current inventory dips below
a specific value

¤ Replicating changes to another table, or even another database

4

Trigger Mechanism

¨ DB trigger mechanism must keep track of two things:
¨ When is the trigger actually executed?

¤ The event that causes the trigger to be considered
¤ The condition that must be satisfied before the trigger

will execute
n (Not every database requires a condition on triggers…)

¨ What does the trigger do when it’s executed?
¤ The actions performed when the trigger executes

¨ Called the event-condition-action model for triggers

5

When Triggers Execute

¨ Databases usually support triggering on inserts,
updates, and deletes

¨ Can’t trigger on selects
¤ Implication: Can’t use triggers to audit or prevent read-

accesses to a database (bummer)
¨ Commercial databases also support triggering on many

other operations
¤ Data-definition operations (create/alter/drop table, etc.)
¤ Login/logout of specific users
¤ Database startup, shutdown, errors, etc.

¨ For simplicity, will limit discussion to DML triggers only

6

When Triggers Execute

¨ Can typically execute the trigger before or after the
triggering DML event
¤ Usually, DDL/user/database triggering events only run the

trigger after the event (pretty obvious)
¤ “Before” triggers can abort the DML operation, if necessary

¨ Some DBs also support “instead of” triggers
¤ Execute trigger instead of performing the triggering operation

¨ Triggers are row-level triggers or statement-level triggers
¤ A row-level trigger is executed for every single row that is

modified by the statement
n (…as long as the row satisfies the trigger condition, if specified…)

¤ A statement-level trigger is executed once for the entire
statement

7

Trigger Data

¨ Row-level triggers can access the old and new
version of the row data, when available:
¤ Insert triggers only get the new row data
¤ Update triggers get both the old and new row data
¤ Delete triggers only get the old row data

¨ Triggers can also access and modify other tables
¤ e.g. to look up or record values during execution

8

Trigger Syntax

¨ SQL:1999 specifies a syntax for triggers
¤ Discussed in the textbook, section 5.3

¨ Again, wide variation from vendor to vendor
¤ Oracle and DB2 are similar to SQL99, but not identical

n (triggers always seem to involve vendor-specific features)

¤ SQLServer, Postgres, MySQL all have different features
¤ Constraints on what triggers can do also vary widely

from vendor to vendor

¨ Will focus on MySQL trigger syntax, functionality

9

Trigger Example: Bank Overdrafts

¨ Want to handle overdrafts on bank accounts
¨ If an update causes a balance to go negative:

¤ Create a new loan with same ID as the account number
¤ Set the loan balance to the negative account balance

n (…the account balance went negative…)
¤ Need to update borrower table as well!

¨ Needs to be a row-level trigger, executed before
or after updates to the account table
¤ If database supports trigger conditions, only trigger on

updates when account balance < 0

10

SQL99/Oracle Trigger Syntax

¨ Book uses SQL:1999 syntax, similar to Oracle/DB2
CREATE TRIGGER trg_overdraft AFTER UPDATE ON account
REFERENCING NEW ROW AS nrow
FOR EACH ROW WHEN nrow.balance < 0
BEGIN ATOMIC

INSERT INTO loan VALUES (nrow.account_number,
nrow.branch_name,
-nrow.balance);

INSERT INTO borrower
(SELECT customer_name, account_number
FROM depositor AS d
WHERE nrow.account_number = d.account_number);

UPDATE account AS a SET balance = 0
WHERE a.account_number = nrow.account_number;

END

11

MySQL Trigger Syntax

¨ MySQL has more limited trigger capabilities
¤ Trigger execution is only governed by events, not conditions

n Workaround: Enforce the condition within the trigger body
¤ Old and new rows have fixed names: OLD, NEW

¨ Change the overdraft example slightly:
¤ Also apply an overdraft fee! “Kick ‘em while they’re down!”

¨ What if the account is already overdrawn?
¤ Loan table will already have a record for overdrawn

account…
¤ Borrower table will already have a record for the loan, too!
¤ Previous version of trigger would cause duplicate key error!

12

MySQL INSERT Enhancements

¨ MySQL has several enhancement to the INSERT command
¤ (Most databases provide similar capabilities)

¨ Try to insert a row, but if key attributes are same as another
row, simply don’t perform the insert:
INSERT IGNORE INTO tbl ...;

¨ Try to insert a row, but if key attributes are same as another
row, update the existing row:
INSERT INTO tbl ... ON DUPLICATE KEY

UPDATE attr1 = value1, ...;
¨ Try to insert a row, but if key attributes are same as another

row, replace the old row with the new row
¤ If key is not same as another row, perform a normal INSERT
REPLACE INTO tbl ...;

13

MySQL Trigger Syntax (2)

CREATE TRIGGER trg_overdraft BEFORE UPDATE ON account FOR EACH ROW
BEGIN

DECLARE overdraft_fee NUMERIC(12, 2) DEFAULT 30;
DECLARE overdraft_amt NUMERIC(12, 2);

-- If an overdraft occurred then handle by creating/updating a loan.
IF NEW.balance < 0 THEN

-- Remember that NEW.balance is negative.
SET overdraft_amt = overdraft_fee - NEW.balance;

INSERT INTO loan (loan_number, branch_name, amount)
VALUES (NEW.account_number, NEW.branch_name, overdraft_amt)

ON DUPLICATE KEY UPDATE amount = amount + overdraft_amt;

INSERT IGNORE INTO borrower (customer_name, loan_number)
SELECT customer_name, account_number FROM depositor
WHERE depositor.account_number = NEW.account_number;

SET NEW.balance = 0;
END IF;

END;

14

Trigger Pitfalls

¨ Triggers may or may not execute when you expect…
¤ e.g. MySQL insert-triggers fire when data is bulk-loaded into the

DB from a backup file
n Databases usually allow you to temporarily disable triggers

¤ e.g. truncating a table usually does not fire delete-triggers
¨ If a trigger for a commonly performed task runs slowly, it

will kill DB performance
¨ If a trigger has a bug in it, it may abort changes to tables

at unexpected times
¤ The actual cause of the issue may be difficult to discern

¨ Triggers can write to other tables, which may also have
triggers on them…
¤ Not hard to create an infinite chain of triggering events

15

Alternatives to Triggers

¨ Triggers can be used to implement many complex tasks
¨ Example: Can implement referential integrity with

triggers!
¤ On all inserts and updates to referencing table, ensure that

foreign-key column value appears in referenced table
n If not, abort the operation!

¤ On all updates and deletes to referenced table, ensure that
value doesn’t appear in referencing table
n If it does, can abort the operation, or cascade changes to the

referencing relation, etc.

¨ This is definitely slower than the standard mechanism J

16

Alternatives to Triggers (2)

¨ Can you use stored procedures instead?
¤ Stored procedures usually have fewer limitations than

triggers
n Stored procs can take more detailed arguments, return values to

indicate success/failure, have out-params, etc.
n Can perform more sophisticated transaction processing

¤ Trigger support is also very vendor-specific, so either
implementation choice will have this limitation

¨ Typically, triggers are used in very limited ways
¤ Update “row version” or “last modified timestamp” values in

modified rows
¤ Simple operations that don’t require a great deal of logic
¤ Database replication (sometimes)

17

Triggers and Summary Tables

¨ Triggers are sometimes used to compute summary
results when detail records are changed

¨ Example: a table of branch summary values
¤ e.g. (branch_name, total_balances, total_loans)

¨ Motivation:
¤ If these values are used frequently in queries, want to

avoid overhead of recomputing them all the time
¨ Idea: update this summary table with triggers

¤ Anytime changes are made to account or loan,
update the summary table based on the changes

18

Materialized Views

¨ Some databases provide materialized views, which
implement such functionality

¨ Simple views usually treated as named SQL queries
¤ i.e. a derived relation with the specified definition

¨ When a query refers to a simple view, database
substitutes view’s definition directly into the query
¤ Benefit: allows optimization of the entire query
¤ Drawback: if many queries reference a simple view,

the same values will be computed again and again…

19

Materialized Views (2)

¨ Materialized views actually create a new table,
populated by the results of the view definition
¤ Queries can use values in the materialized view over

and over, without recomputing
¤ Database can perform optimized lookups against the

materialized view, e.g. by using indexes
¨ Just one little problem:

¤ What if the tables referenced by the view change?
¤ Need to recompute contents of the materialized view!
¤ Called view maintenance

20

Materialized View Maintenance

¨ If a database doesn’t support materialized views:
¤ Can perform view maintenance with triggers on the

referenced tables
¤ A very manual approach, but definitely an option for

databases that don’t support materialized views
n e.g. Postgres, MySQL

¨ Databases with materialized views will perform view
maintenance automatically
¤ …much simpler than creating a bunch of triggers!
¤ Typically provide many options, such as:

n Immediate view maintenance – update contents after any change
n Deferred view maintenance – update view on a periodic schedule

21

Materialized View Maintenance (2)

¨ A simple approach for updating materialized views:
¤ Recompute entire view from scratch after every change!
¤ Very expensive approach, especially if backing tables are

changed frequently
¨ A better approach: incremental view maintenance

¤ Using the view definition and the specific data changes
applied to the backing tables, only update those parts of
the view that are actually affected

¨ Again, DBs with materialized views will do this for you
¨ Can also do incremental view maintenance manually

with triggers, but it can be complicated…

22

Authentication and Authorization

¨ Security systems must provide two major features
¨ Authentication (aka “A1”, “AuthN”, “Au”):

¤ “I am who I say I am.”

¨ Authorization (aka “A2”, “AuthZ”, “Az”):
¤ “I am allowed to do what I want to do.”

¨ Each component is useless without the other

23

User Authorization

¨ SQL databases perform authentication of users
¤ Must specify username and password when connecting
¤ Most DBMSes provide secure connections (e.g. SSL), etc.

¨ SQL provides an authorization mechanism for various
operations
¤ Different operations require different privileges in the

database
¤ Users can be granted privileges to perform necessary

operations
¤ Privileges can also be revoked, to limit available user

operations

24

Basic SQL Privileges

¨ Most fundamental set of privileges:
¤ SELECT, INSERT, UPDATE, DELETE
¤ Allows (or disallows) user to perform specified action
¤ User is granted access to perform specified operations

on particular relations
¨ Simple syntax:

GRANT SELECT ON account TO banker;
¤ User “banker” is allowed to issue queries against the
account relation

25

Granting Privileges

¨ Can grant multiple privileges to multiple users
GRANT SELECT, UPDATE ON account
TO banker, manager;

GRANT INSERT, DELETE ON account
TO manager;

¤ Bankers can view and modify account balances
¤ Only managers can create or remove accounts
¤ Must specify each table individually

26

All Users, All Privileges

¨ Can specify PUBLIC to grant privileges to all users
¤ Also includes users added to DBMS in future
GRANT SELECT ON promotions TO PUBLIC;

¨ Can specify ALL PRIVILEGES to grant all
privileges to a user

GRANT ALL PRIVILEGES ON account
TO admin_lackey;

27

Column-Level Privileges

¨ For INSERT and UPDATE privileges, can optionally
constrain to specific columns of relations
¤ UPDATE: can only update specified columns
¤ INSERT: can only insert into specified columns

¨ Example: employee relation
¤ Employees can only modify their contact info
¤ Allow HR to manipulate all aspects of employees

GRANT UPDATE (home_phone, email) ON employee
TO emp_user;

GRANT INSERT, UPDATE ON employee TO hr_user;

28

Revoking Privileges

¨ Can revoke privileges just as easily:
REVOKE priv1, ... ON relation
FROM user1, ...;

¤ Can specify a list of privileges, and a list of users

¨ With INSERT and UPDATE, can also revoke
privileges on individual columns

29

Privileges and Views

¨ Users can be granted privileges on views
¤ May differ from privileges on underlying tables

¨ When accessing a view:
¤ Privileges on the view are checked, not the privileges on

underlying tables

¨ Example: employee relation
¤ Only HR can view all employee data
¤ Employees can only view contact details

30

Example View Privileges

¨ SQL commands:
-- Start by disallowing all access to employee
REVOKE ALL PRIVILEGES ON employee TO PUBLIC;

-- Only allow hr_user to access employee relation
GRANT ALL PRIVILEGES ON employee TO hr_user;

-- View for "normal" employees to access
CREATE VIEW directory AS

SELECT emp_name, email, office_phone
FROM employee;

GRANT SELECT ON directory TO emp_user;

¨ When employees issue queries against directory, DB
only checks directory privileges

31

View Processing

¨ As stated before, databases usually treat views as
named SQL queries
¤ Database substitutes view’s definition directly into

queries that reference the view
¨ SQL engine performs authorization before this

process occurs
¤ DB verifies access permissions on referenced views, and

then substitutes view definitions into the query plan
¤ Allows DB to support different access constraints on

views, vs. their underlying tables

32

Other Privileges

¨ Many other privileges in SQL
¤ EXECUTE grants privilege to execute a function or

stored procedure
¤ CREATE grants privilege to create tables, views, other

schema objects
¤ REFERENCES grants privilege to create foreign key

or CHECK constraints
¤ Most DBMSes provide several others, too

n PostgreSQL has 11 permissions; MySQL has 27
n Oracle has nearly 200 different permissions!

33

REFERENCES Privilege

¨ Foreign key constraints limit what users can do
¤ Rows in referencing relation limit update and delete

operations in referenced relation
¤ A user adding a foreign key constraint can disallow these

operations for all users!

¨ Must have the REFERENCES privilege to create
foreign keys

¨ REFERENCES requires both a relation and some
attributes to be specified
¤ May create foreign keys involving those attributes

34

Passing On Privileges

¨ Users can’t automatically grant their own privileges to
other users

¨ Must explicitly allow this:
GRANT SELECT ON directory TO emp_user

WITH GRANT OPTION;
¤ WITH GRANT OPTION clause allows privileges to be passed

on
¨ Can lead to confusing situations:

¤ If alex grants a privilege to bob, then alex has that privilege
revoked, should it affect bob?

¤ If alex and bob both grant a privilege to carl, then alex
revokes that privilege, does carl still have the privilege?

¨ Typically, databases implement simple solutions to these
kinds of problems

35

Authorization Notes

¨ SQL authorization mechanism is very rich
¨ Still has a number of shortcomings

¤ Can’t grant/revoke privileges on per-tuple basis
n e.g. “I can see only the rows in the account relation

corresponding only to my bank accounts.”
n (If there were SELECT triggers, we could implement this…)
n (Or, you could emulate this with table-returning functions…)

¤ Significant variations in security models implemented by
various databases

36

Authorization Notes (2)

¨ Most applications don’t rely heavily on DB authorization
¤ Application can implement a broad range of authorization

schemes, but implementation complexity increases
¤ Web applications are primary example of this
¤ Database access layer typically has only one user, with full

access and modification privileges
¨ Application performs authentication/authorization itself

¤ Access-checks are sprinkled throughout application code;
easy to introduce security holes! (e.g. PHP applications)

¤ App-servers with declarative security specifications greatly
mitigate this problem (e.g. JavaEE platform security)

37

Authorization Notes (3)

¨ Best to employ SQL auth mechanism in some way…
¤ Declarative security specifications
¤ Database simply won’t allow access to privileged data, or

unauthorized changes to schema
¨ For large, important database apps, definitely want

to explore using SQL authorization features
¤ At the least, create a DBMS user for each user-role that

application supports
¤ An “admin” user for administrators in the application, with

fewer restrictions
¤ A very restricted “common user” for end-users
¤ Greatly reduces the dangers of SQL-based attacks

38

Next Time

¨ Last major topic for SQL data definition: indexes
¤ Used to facilitate much faster database lookups

¨ Will also briefly discuss DB storage mechanisms,
and how this affects query performance

39

