
SQL STORED ROUTINES
CS121: Relational Databases
Fall 2018 – Lecture 9

SQL Functions

¨ SQL queries can use sophisticated math operations
and functions
¤ Can compute simple functions, aggregates
¤ Can compute and filter results

¨ Sometimes, apps require specialized computations
¤ Would like to use these in SQL queries, too

¨ SQL provides a mechanism for defining functions
¤ Called User-Defined Functions (UDFs)

2

SQL Functions (2)

¨ Can be defined in a procedural SQL language, or in
an external language
¤ SQL:1999, SQL:2003 both specify a language for

declaring functions and procedures
¨ Different vendors provide their own languages

¤ Oracle: PL/SQL
¤ Microsoft: Transact-SQL (T-SQL)
¤ PostgreSQL: PL/pgSQL
¤ MySQL: stored procedure support strives to follow

specifications (and mostly does)
¤ Some also support external languages: Java, C, C#, etc.

¨ As usual, lots of variation in features and syntax

3

Example SQL Function

¨ A SQL function to count how many bank accounts a particular
customer has:

CREATE FUNCTION account_count(
customer_name VARCHAR(20)

) RETURNS INTEGER
BEGIN
DECLARE a_count INTEGER;

SELECT COUNT(*) INTO a_count FROM depositor AS d
WHERE d.customer_name = customer_name;

RETURN a_count;
END

¤ Function can take arguments and return values
¤ Can use SQL statements and other operations in body

4

Example SQL Function (2)

¨ Can use our function for individual accounts:
SELECT account_count('Johnson');

¨ Can include in computed results:
SELECT customer_name,

account_count(customer_name) AS accts
FROM customer;

¨ Can include in WHERE clause:
SELECT customer_name FROM customer
WHERE account_count(customer_name) > 1;

5

Arguments and Return-Values

¨ Functions can take any number of arguments (even 0)
¨ Functions must return a value

¤ Specify type of value in RETURNS clause

¨ From our example:
CREATE FUNCTION account_count(

customer_name VARCHAR(20)
) RETURNS INTEGER

¤ One argument named customer_name, type is
VARCHAR(20)

¤ Returns some INTEGER value

6

Table Functions

¨ SQL:2003 spec. includes table functions
¤ Return a whole table as their result
¤ Can be used in FROM clause

¨ A generalization of views
¤ Can be considered to be parameterized views
¤ Call function with specific arguments
¤ Result is a relation based on those arguments

¨ Although SQL:2003 not broadly supported yet, most
DBMSes provide a feature like this
¤ …in various ways, of course…

7

Function Bodies and Variables

¨ Blocks of procedural SQL commands are enclosed
with BEGIN and END
¤ Defines a compound statement
¤ Can have nested BEGIN … END blocks

¨ Variables are specified with DECLARE statement
¤ Must appear at start of a block
¤ Initial value is NULL
¤ Can initialize to some other value with DEFAULT syntax
¤ Scope of a variable is within its block
¤ Variables in inner blocks can shadow variables in outer

blocks

8

Example Blocks and Variables

¨ Our account_count function’s body:
BEGIN
DECLARE a_count INTEGER;

SELECT COUNT(*) INTO a_count FROM depositor AS d
WHERE d.customer_name = customer_name;

RETURN a_count;
END

¨ A simple integer variable with initial value:
BEGIN
DECLARE result INTEGER DEFAULT 0;
...

END

9

Assigning To Variables

¨ Can use SELECT … INTO syntax
¤ For assigning the result of a query into a variable

SELECT COUNT(*) INTO a_count
FROM depositor AS d
WHERE d.customer_name = customer_name;

¤ Query must produce a single row
Note: SELECT INTO sometimes has multiple meanings!
This form is specific to the body of stored routines.
n e.g. frequently used to create a temp table from a SELECT

¨ Can also use SET syntax
¤ For assigning result of a math expression to a variable

SET result = n * (n + 1) / 2;

10

Assigning Multiple Variables

¨ Can assign to multiple variables using SELECT
INTO syntax

¨ Example: Want both the number of accounts and the
total balance

DECLARE a_count INTEGER;
DECLARE total_balance NUMERIC(12,2);

SELECT COUNT(*), SUM(balance)
INTO a_count, total_balance
FROM depositor AS d NATURAL JOIN account
WHERE d.customer_name = customer_name;

11

Another Example

¨ Simple function to compute sum of 1..N
CREATE FUNCTION sum_n(n INTEGER) RETURNS INTEGER
BEGIN

DECLARE result INTEGER DEFAULT 0;
SET result = n * (n + 1) / 2;
RETURN result;

END

¨ Lots of extra work in that! To simplify:
CREATE FUNCTION sum_n(n INTEGER) RETURNS INTEGER
BEGIN

RETURN n * (n + 1) / 2;
END

12

Dropping Functions

¨ Can’t simply overwrite functions in the database
¤ Same as tables, views, etc.

¨ First, drop old version of function:
DROP FUNCTION sum_n;

¨ Then create new version of function:
CREATE FUNCTION sum_n(n INTEGER)
RETURNS INTEGER
BEGIN

RETURN n * (n + 1) / 2;
END

13

SQL Procedures

¨ Functions have specific limitations
¤ Must return a value
¤ All arguments are input-only
¤ Typically cannot affect current transaction status

(i.e. function cannot commit, rollback, etc.)
¤ Usually not allowed to modify tables, except in particular

circumstances
¨ Stored procedures are more general constructs

without these limitations
¤ Generally can’t be used in same places as functions
¤ e.g. can’t use in SELECT clause
¤ Procedures don’t return a value like functions do

14

Example Procedure

¨ Write a procedure that returns both the number of accounts a
customer has, and their total balance
¤ Results are passed back using out-parameters

CREATE PROCEDURE account_summary(
IN customer_name VARCHAR(20),
OUT a_count INTEGER,
OUT total_balance NUMERIC(12,2)

)
BEGIN

SELECT COUNT(*), SUM(balance)
INTO a_count, total_balance
FROM depositor AS d NATURAL JOIN account
WHERE d.customer_name = customer_name;

END

¨ Default parameter type is IN

15

Calling a Procedure

¨ Use the CALL statement to invoke a procedure
CALL account_summary(...);

¨ To use this procedure, must also have variables to
receive the values

¨ MySQL SQL syntax:
CALL account_summary('Johnson',

@j_count, @j_total);
SELECT @j_count, @j_total;

¤ @var declares a temporary
session variable

+--------+---------+
| @j_cnt | @j_tot |
+--------+---------+
| 2 | 1400.00 |
+--------+---------+

16

Conditional Operations

¨ SQL provides an if-then-else construct
IF cond1 THEN command1
ELSEIF cond2 THEN command2
ELSE command3
END IF

¤ Branches can also specify compound statements instead
of single statements
n Enclose compound statements with BEGIN and END

¤ Can leave out ELSEIF and/or ELSE clauses, as usual

17

Looping Constructs

¨ SQL also provides looping constructs
¨ WHILE loop:

DECLARE n INTEGER DEFAULT 0;
WHILE n < 10 DO

SET n = n + 1;
END WHILE;

¨ REPEAT loop:
REPEAT

SET n = n – 1;
UNTIL n = 0
END REPEAT;

18

Iteration Over Query Results

¨ Sometimes need to issue a query, then iterate over
each row in result
¤ Perform more sophisticated operations than a simple SQL

query can perform
¨ Examples:

¤ Many kinds of values that standard OLTP databases can’t
compute quickly!

¤ Assign a rank to a collection of rows:
n Can compare each row to all other rows, typically with a cross-join
n Or, sort rows then iterate over results, assigning rank values

¤ Given web logs containing individual HTTP request records:
n Compute each client’s “visit length,” from requests that are within

20 minutes of some other request from the same client

19

Cursors

¨ Need to issue a query to fetch specific results
¨ Then, need to iterate through each row in the result

¤ Operate on each row’s values individually
¨ A cursor is an iterator over rows in a result set

¤ Cursor refers to one row in query results
¤ Can access row’s values through the cursor
¤ Can move cursor forward through results

¨ Cursors can provide different features
¤ Read-only vs. read-write
¤ Forward-only vs. bidirectional
¤ Static vs. dynamic (when concurrent changes occur)

20

Cursor Notes

¨ Cursors can be expensive
¨ Can the operation use a normal SQL query instead?

¤ (Usually, the answer is yes…)
¤ Cursors let you do what databases do, but slower

¨ Cursors might also hold system resources until they are
finished
¤ e.g. DB might store query results in a temporary table, to

provide a read-only, static view of query result
¨ Syntax varies widely across DBMSes
¨ Most external DB connectivity APIs provide cursor

capabilities

21

Stored Routines and Cursors

¨ Can use cursors inside stored procedures and UDFs
¨ Syntax from the book:

DECLARE n INTEGER DEFAULT 0;
FOR r AS SELECT balance FROM account

WHERE branch_name='Perryridge'
DO

SET n = n + r.balance;
END FOR

¤ Iterates over account balances from Perryridge branch,
summing balances

¤ r is implicitly a cursor
n FOR construct automatically moves the cursor forward

¤ (Could compute this with a simple SQL query, too…)

22

MySQL Cursor Syntax

¨ Must explicitly declare cursor variable
DECLARE cur CURSOR FOR

SELECT ... ;

¨ Open cursor to use query results:
OPEN cur;

¨ Fetch values from cursor into variables
FETCH cur INTO var1, var2, ... ;

¤ Next row is fetched, and values are stored into specified variables
¤ Must specify the same number of variables as columns in the result
¤ A specific error condition is flagged to indicate end of results

¨ Close cursor at end of operation
CLOSE cur;

¤ Also happens automatically at end of enclosing block

23

Handling Errors

¨ Many situations where errors can occur in stored
procedures
¤ Called conditions
¤ Includes errors, warnings, other signals
¤ Can also include user-defined conditions

¨ Handlers can be defined for conditions
¨ When a condition is signaled, its handler is invoked

¤ Handler can specify whether to continue running the
procedure, or whether to exit procedure instead

24

Conditions

¨ Predefined conditions:
¤ NOT FOUND

n Query fetched no results, or command processed no results

¤ SQLWARNING
n Non-fatal SQL problem occurred

¤ SQLEXCEPTION
n Serious SQL error occurred

25

Conditions (2)

¨ Can also define application-specific conditions
¤ Examples:

n “Account overdraft!”
n “Inventory of item hit zero.”

¨ Syntax for declaring conditions:
DECLARE acct_overdraft CONDITION
DECLARE zero_inventory CONDITION

¨ Not every DBMS supports generic conditions
¤ e.g. MySQL supports assigning names to existing SQL error

codes, but not creating new conditions

26

Handlers

¨ Can declare handlers for specific conditions
¨ Handler specifies statements to execute
¨ Handler also specifies what should happen next:

¤ Continue running the procedure where it left off
¤ Exit the stored procedure completely

¨ Syntax:
¤ A continue-handler:

DECLARE CONTINUE HANDLER FOR condition statement
¤ An exit-handler:

DECLARE EXIT HANDLER FOR condition statement
¤ Can also specify a statement-block instead of an individual

statement

27

Handlers (2)

¨ Handlers can do very simple things
¤ e.g. set a flag to indicate some situation

¨ Can also do very complicated things
¤ e.g. insert rows into other tables to log failure situations
¤ e.g. properly handle an overdrawn account

28

Total Account Balance – MySQL

¨ Declared as a function – returns a value

CREATE FUNCTION acct_total(cust_name VARCHAR(20))
RETURNS NUMERIC(12,2)
BEGIN

-- Variables to accumulate into
DECLARE bal NUMERIC(12,2);
DECLARE total NUMERIC(12,2) DEFAULT 0;

-- Cursor, and flag for when fetching is done
DECLARE done INT DEFAULT 0;
DECLARE cur CURSOR FOR

SELECT balance
FROM account NATURAL JOIN depositor AS d
WHERE d.customer_name = cust_name;

29

Total Account Balance (2)

-- When fetch is complete, handler sets flag
-- 02000 is MySQL error for "zero rows fetched"
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000'

SET done = 1;

OPEN cur;
REPEAT

FETCH cur INTO bal;
IF NOT done THEN

SET total = total + bal;
END IF;

UNTIL done END REPEAT;
CLOSE cur;
RETURN total;

END

30

Using Our User-Defined Function

¨ Can compute total balances now:
SELECT customer_name,

acct_total(customer_name) AS total
FROM customer;

¤ Result: +---------------+---------+
| customer_name | total |
+---------------+---------+
Adams	0.00
Brooks	0.00
Curry	0.00
Glenn	0.00
Green	0.00
Hayes	900.00
Jackson	0.00
Johnson	1400.00
Jones	750.00
Lindsay	700.00
Majeris	850.00
McBride	0.00
Smith	1325.00
Turner	350.00
Williams	0.00
+---------------+---------+

31

Stored Routine Benefits

¨ Very effective for manipulating large datasets in
unusual ways, within the database
¤ Don’t incur communications overhead of sending commands

and exchanging data
¤ Database can frequently perform such tasks more efficiently

than the applications can
¨ Often used to provide a secure interface to data

¤ e.g. banks will lock down data tables, and only expose
certain operations through stored procedures

¨ Can encapsulate business logic in procedures
¤ Forbid invalid states by requiring all operations go through

stored procedures

32

Stored Routine Drawbacks

¨ Increases load on database system
¤ Can reduce performance for all operations being

performed by DBMS
¤ Need to make sure the operation really requires a

stored procedure…
n Most projects do not need stored procedures!

¨ Very hard to migrate to a different DBMS
¤ Different vendors’ procedural languages have many

distinct features and limitations

33

