SQL DDL I



Last Lecture

Covered SQL constraints
NOT NULL constraints
CHECK constraints
PRIMARY KEY constraints
FOREIGN KEY constraints
UNIQUE constraints

Impact of NULL values on constraint enforcement
Specifically, FOREIGN KEY and UNIQUE...

Automatic resolution of constraint violation



Constraint Names

Can assign names to constraints
When constraint is violated, error indicates which constraint
Database usually assigns names to constraints if you don’t
Rules on constraint names vary

Example:
CREATE TABLE employee (

CONSTRAINT emp pk PRIMARY KEY (emp id),

CONSTRAINT emp ssn ck UNIQUE (emp ssn),

CONSTRAINT emp mgr fk FOREIGN KEY (manager id)
REFERENCES employee

Useful for referring to specific constraints



Temporary Constraint Violation

Constraints take time to enforce

Can dramatically impact performance of large data-import
operations

Some operations may need to temporarily violate
constraints

The operation is performed within a larger transaction
(i.e. a batch of operations that should be treated as a unit)

During the transaction, constraints are temporarily violated
At end of transaction, constraint is restored

Defer constraint enforcement to end of transaction

At end of transaction, all changes are checked against
deferred constraints



Deferring Constraint Application

Can mark constraints as deferrable

In constraint declaration, specify:
DEFERRABLE constraints may be deferred to end of

transaction
NOT DEFERRABLE constraints are always applied

immediately
For DEFERRABLE constraints:
INITIALLY IMMEDIATE is applied immediately by

default
INITIALLY DEFERRED is applied at end of
transaction by default



Temporarily Removing Constraints

To defer constraints in current transaction:
SET CONSTRAINTS cl, c2, ... DEFERRED;

Specified constraints must be deferrable

Not all databases support deferred constraints
Only option is to temporarily remove and then reapply
constraints

Will usually affect all users of database! Safest to ensure
exclusive access for this.

Remove, then reapply constraints with ALTER TABLE
syntax



Date and Time Values

SQL provides data types for dates and times
DATE

A calendar date, including year, month, and day of month

TIME

A time of day, including hour, minute, and second value
Doesn’t include fractional seconds

TIME (P)
Just like TIME, but includes P digits of fractional seconds
Typically, P = [0, 6]



Date and Time Values (2)

Can include timezone info as well:
TIME WITH TIMEZONE
TIME (P) WITH TIMEZONE

TIMESTAMP

A combination of date and time values
Includes fractional seconds by default
Can also specify TIMESTAMP (P)

P = 6 by default

Timestamps can also include time zone info
TIMESTAMP WITH TIMEZONE
TIMESTAMP (P) WITH TIMEZONE



Date and Time Values (3)

Often a variety of other non-standard types
DATETIME - Like TIMESTAMP but P = 0 by default
YEAR - Just a 4-digit year value

Nonstandard = not portable



Microsoft SQLServer Date Types

SQLServer 2005 and earlier provide very different
date /time support

DATETIME — more like standard TIMESTAMP type

Represents both date and time
Jan 1, 1753 — Dec 31, 9999; precision of 3.33ms (222)

SMALLDATETIME
Jan 1, 1900 = Jun 6, 2079; precision of 1 minute
No ability to represent only a date, or only a timel

SQLServer 2008 adds more standard-like support

DATE, TIME, DATETIMEZ2 — similar to standard types
DATETIMEOFFSET — date/time value plus timezone



Date and Time Formats

Date and time values follow specific formats
Enclosed in single-quotes

Examples: MER-A “Spirit” launch time
Timestamp value (UT; +0):
'2003-06-10 17:58:46.773"
Date value: '2003-06-10"
Time value: '17:58:47"

Can have invalid date /time values:
Invalid time: '25:14:68'
Invalid date: '2001-02-31"

Some DBMSes can allow partial /invalid dates and times, if
required by an application



Date and Time Formats (2)

Most DBMSes support many date /time formats

Most widely supported is ISO-8601 date /time
format

1ISO-8601 format:
'2003-06-10 17:58:46.773"
year-month-day hour:minutes:seconds.milliseconds
Sometimes date and time are separated by “T” character
Time is in 24-hour time format
Optional timezone specification at end
Other formats:
'"June 10, 2003 5:58:46 PM'
'10-Jun-2003 17:58:46.773"

Most databases can parse all of these



“Current Time” Values

Several functions provide current date and time
values

CURRENT DATE ()
CURRENT TIME ()
CURRENT TIMESTAMP ()

Include time zone information
LOCALTIME ()
LOCALTIMESTAMP ()

Don’t include time zone information

Usually many other functions too, e.g. NOW ()
Nonstandard, but widely supported



Components of Dates and Times

Date and time values are not atomic

Not really allowed in the Relational Model...

(In reality, many SQL types are not atomic)
SQL provides a function to extract components of
dates and times

EXTRACT (field FROM value)

Can specify:

YEAR, MONTH, DAY, HOUR, MINUTE, SECOND
TIMZEONE HOUR, TIMEZONE MINUTE

Many other (nonstandard but common) options too

week of year, day of year, day of week, quarter, century, ...



Example Date Operation

Sales records:
CREATE TABLE salesrecords (
sale id INTEGER PRIMARY KEY,
cust id INTEGER NOT NULL,
sale time TIMESTAMP NOT NULL,
sales total NUMERIC(8, 2) NOT NULL,

_—
Compute monthly sales totals:
Start by finding month of each sale

SELECT sale id,
EXTRACT (MONTH FROM sale time) AS sale month
FROM salesrecords;

Build larger query using this information



Time Intervals

INTERVAL

Data type for time intervals
Supports operations on dates and times
Also supports a precision: INTERVAL (P)

If x and y are date values:

x —y produces an INTERVAL

If i is an INTERVAL value:

x + i or x —i produces a date value

Can use INTERVAL to specify fixed intervals

INTERVAL 1 WEEK
INTERVAL 'l WEEK'



Example Date Schema

Event database schema:
CREATE TABLE event (

event_id INTEGER PRIMARY KEY,
event type VARCHAR(20) NOT NULL,
event date DATE NOT NULL,

event desc VARCHAR(200)
) ;

To generate notices of upcoming events:

SELECT * FROM event
WHERE event date >= CURRENT DATE () AND

event_date <=
(CURRENT_DATE() + INTERVAL 1 WEEK) ;



Example Date Schema (2)

Can rewrite to use BETWEEN syntax:
SELECT * FROM event
WHERE event date BETWEEN
CURRENT DATE () AND
(CURRENT DATE () + INTERVAL 1 WEEK) ;

Current date /time functions are evaluated only
once during a query! ©
e.g. query will see one value for CURRENT TIME ()
even if it runs for an extended period of time



“Large Obiject” Types

SQL CHAR (N) and VARCHAR (N) types have
limited sizes

For CHAR, usually N < 256

For VARCHAR, usually N < 65536

BLOB and CLOB types support larger data sizes
“LOB” = Large Obiject
Useful for storing images, documents, etc.

Support varies widely across DBMSes

TEXT is also rather common

Large text fields, e.g. MB or GB of text data



Example Schema

Schema for storing book reviews:
CREATE TABLE bookreview (

review_id INT PRIMARY KEY,
book title VARCHAR(50) NOT NULL,
book image BLOB,
reviewer VARCHAR (30) NOT NULL,
pub_time TIMESTAMP NOT NULL,
review_text CLOB NOT NULL,
UNIQUE (book title, reviewer)

) ;
Review text can be large

Can also include a book image, if desired



Large Object Notes

General support for “large object” types is usually
focused on smaller objects

No larger than a few 10s of KBs

A few MBs is definitely pushing it
Most expensive part is moving large objects into and
out of database

For simple, general purpose DBMSes, can involve
constructing large SQL statements with escaped data

Databases also don’t store this information very
efficiently



Large Object Notes (2)

For objects larger than ~100 KB, should definitely use
the filesystem

That’s what it’s designed for!
Store filesystem paths in the database instead

For smaller objects that are frequently retrieved, storing
on filesystem can take load off database
e.g. user icons for a social networking website

Let webserver serve them directly from the filesystem —
again, it knows how to do that kind of thing more quickly

Some DBMSes have specialized support for storing and
manipulating very large objects

Just don’t expect your application to be easily portable...



Default Values

Can specify default values for columns
colname type DEFAULT expr

Can specify an actual value
book rating INT DEFAULT 3

Can specify an expression
pub time TIMESTAMP DEFAULT NOW ()

If default value is unspecified, DB will use NULL
Affects INSERT statements

Columns with default values don’t have to be specified

Columns without a default value must be specified at insert-
timel



Serial Primary Key Values

Many databases offer special support for integer
primary keys
DB will generate unique values for use as primary keys

Examples:

PostgreSQL and MySQL:
CREATE TABLE employee (
emp id SERIAL PRIMARY KEY,

Microsoft SQLServer:
CREATE TABLE employee (
emp_id INT IDENTITY PRIMARY KEY,



Updated Book Review Schema

CREATE TABLE bookreview (
review;id SERIAL PRIMARY KEY,
book title VARCHAR(50) NOT NULL,
book image BLOB,
reviewer VARCHAR (30) NOT NULL,

pub_ time TIMESTAMP NOT NULL DEFAULT NOW (),
book rating INT NOT NULL DEFAULT 3,
review_text CLOB NOT NULL,

UNIQUE (book title, reviewer)
)
Every new review gets a unique ID value

Publication time is set to current time when review is added to
database

Default book rating is 3 out of 5



Altering Table Schemas

SQL ALTER TABLE command allows schema
changes
Wide variety of operations
Rename a table
Add and remove constraints
Add and remove table columns
Change the type of a column
Change default values for columns
Very useful for migrating schema to new version
Migration process must be carefully designed...

Again, support varies across DBMSes



Example Alterations

Rename the bookreview table:

ALTER TABLE bookreview
RENAME TO item review;

Remove the book image column:

ALTER TABLE bookreview
DROP COLUMN book image;

Add a constraint to the bookreview table:

ALTER TABLE bookreview
ADD CHECK (book rating BETWEEN 1 AND 5);



Table Alteration Notes

Can drop columns from tables
What if the column is a key?
What if the column is referenced by a view?

Can often specify CASCADE to delete dependent objects,
if desired

Newly added columns must have a default value
Existing rows in database get default value for new column

Changing table schema can be very expensive

Some operations can require scanning or rewriting the entire
table

Some DBs do this for all schema-alteration commands, e.g. MySQL
e.g. adding a new constraint requires a table scan



Temporary Tables

Sometimes want to generate and store relations
temporarily

Complex operations implemented as multiple queries
This is relational algebra assignment operation: <«

SQL provides temporary tables for these cases
Table’s contents are associated with client’s session
Clients can’t access each others’ temp table data

SQL standard specifies global temporary tables
Temporary table has a global name and schema

Only the contents of the temporary table are per-client

When client disconnects, their temporary data is purged



Temporary Tables (2)

Many databases also provide local temporary tables
Table’s schema is also local to client session
When client disconnects, the table is dropped

Different clients can use same table name with different
schemas

Client can manually purge data from temp tables
when needed

In case of local temp tables, can also drop them anytime
during session



Temporary Table Syntax

Simple variation of CREATE TABLE syntax

Add TEMPORARY (or GLOBAL TEMPORARY) to
command

Example:

Make a temporary table to store counts of sales
grouped by month

CREATE TEMPORARY TABLE salesbymonth (
sale month INT NOT NULL,
num sales INT NOT NULL

) ;



Temporary Table Example

Can populate temp table with computed values

INSERT INTO salesbymonth
SELECT EXTRACT (MONTH FROM sale time) AS mon,
COUNT (*)
FROM salesrecords GROUP BY mon;

Only need to perform computations once
Can improve efficiency of large or multi-step operations
Temporary results are cleaned up at end of session

Issue queries against temporary table and use results

SELECT sale month, num sales, promotion desc
FROM salesbymonth
JOIN promotions USING (sale month) ;



Using Temporary Tables

Temporary tables can dramatically improve
performance of certain queries

Approach:
Create temporary table to store useful but costly

intermediate results
Don’t use many (or any) constraints — want to be fast!

Populate temporary table via INSERT ... SELECT
statement

Use temporary table to compute other results

Temporary table goes away automatically, at end of
transaction, or at end of session



Alternate Temp-Table Syntaxes

Databases frequently support alternate syntaxes
for creating and populating temporary tables

Simplify the common case!

One common syntax (e.g. MySQL, Postgres, Oracle):

CREATE TEMPORARY TABLE tblname AS
select stmt;

Another common syntax (e.g. Postgres, SQLServer):
SELECT ... INTO TEMPORARY TABLE ...;

Both syntaxes can also create non-temporary tables



Real-World Example

A query run on an older MySQL server instance:
SELECT ident, total a / total b AS ratio
FROM (SELECT CONCAT (al, a2) AS ident,

SUM(val a) AS total a
FROM tl1 GROUP BY ident) AS resultl,
(SELECT CONCAT (al, a2) AS ident,
SUM(val b) AS total b
FROM t2 GROUP BY ident) AS result2
WHERE resultl.ident = result2.ident;

Overall query takes ~15 mins to execute on fast server

Inner queries complete in << 1 second by themselves



Real-World Example (2)

MySQL query:
SELECT ident, total a / total b AS ratio
FROM (SELECT CONCAT (al, a2) AS ident,
SUM(val a) AS total a
FROM tl1l GROUP BY ident) AS resultl,
(SELECT CONCAT (al, a2) AS ident,
SUM(val b) AS total b
FROM t2 GROUP BY ident) AS result2
WHERE resultl.ident = result2.ident;

Problem is that MySQL cannot efficiently join two
derived results using a computed column

A limitation of MySQL’s join processor @



Real-World Example (3)

A solution:

First, create temporary tables to hold intermediate results
CREATE TEMPORARY TABLE templ AS
SELECT CONCAT (al, a2) AS ident,
SUM(val a) AS total a
FROM tl1 GROUP BY ident;
...same with other inner query...
Second, create indexes on temporary tables

Finally, issue outer query against temporary tables

Result:

Entire process, including create /drop temp tables,
takes < 1 second (as opposed to ~15 minutes)




