
SQL DDL II
CS121:  Relational Databases
Fall 2018 – Lecture 8



Last Lecture

¨ Covered SQL constraints
¤ NOT NULL constraints
¤ CHECK constraints
¤ PRIMARY KEY constraints
¤ FOREIGN KEY constraints
¤ UNIQUE constraints

¨ Impact of NULL values on constraint enforcement
¤ Specifically, FOREIGN KEY and UNIQUE…

¨ Automatic resolution of constraint violation

2



Constraint Names

¨ Can assign names to constraints
¤ When constraint is violated, error indicates which constraint
¤ Database usually assigns names to constraints if you don’t
¤ Rules on constraint names vary

¨ Example:
CREATE TABLE employee (
...
CONSTRAINT emp_pk PRIMARY KEY (emp_id),
CONSTRAINT emp_ssn_ck UNIQUE (emp_ssn),
CONSTRAINT emp_mgr_fk FOREIGN KEY (manager_id)

REFERENCES employee

¨ Useful for referring to specific constraints

3



Temporary Constraint Violation

¨ Constraints take time to enforce
¤ Can dramatically impact performance of large data-import 

operations
¨ Some operations may need to temporarily violate 

constraints
¤ The operation is performed within a larger transaction

(i.e. a batch of operations that should be treated as a unit)
¤ During the transaction, constraints are temporarily violated
¤ At end of transaction, constraint is restored

¨ Defer constraint enforcement to end of transaction
¤ At end of transaction, all changes are checked against 

deferred constraints

4



Deferring Constraint Application

¨ Can mark constraints as deferrable
¨ In constraint declaration, specify:

¤ DEFERRABLE constraints may be deferred to end of 
transaction

¤ NOT DEFERRABLE constraints are always applied 
immediately

¨ For DEFERRABLE constraints:
¤ INITIALLY IMMEDIATE is applied immediately by 

default
¤ INITIALLY DEFERRED is applied at end of 

transaction by default

5



Temporarily Removing Constraints

¨ To defer constraints in current transaction:
SET CONSTRAINTS c1, c2, ... DEFERRED;

¤ Specified constraints must be deferrable

¨ Not all databases support deferred constraints
¤ Only option is to temporarily remove and then reapply 

constraints
¤ Will usually affect all users of database!  Safest to ensure 

exclusive access for this.
¤ Remove, then reapply constraints with ALTER TABLE

syntax

6



Date and Time Values

¨ SQL provides data types for dates and times
¨ DATE

¤ A calendar date, including year, month, and day of month
¨ TIME

¤ A time of day, including hour, minute, and second value
¤ Doesn’t include fractional seconds

¨ TIME(P)
¤ Just like TIME, but includes P digits of fractional seconds
¤ Typically, P = [0, 6]

7



Date and Time Values (2)

¨ Can include timezone info as well:
¤ TIME WITH TIMEZONE
¤ TIME(P) WITH TIMEZONE

¨ TIMESTAMP
¤ A combination of date and time values
¤ Includes fractional seconds by default
¤ Can also specify TIMESTAMP(P)
¤ P = 6 by default
¤ Timestamps can also include time zone info

n TIMESTAMP WITH TIMEZONE
n TIMESTAMP(P) WITH TIMEZONE

8



Date and Time Values (3)

¨ Often a variety of other non-standard types
¤ DATETIME – Like TIMESTAMP but P = 0 by default
¤ YEAR – Just a 4-digit year value

¤ Nonstandard = not portable

9



Microsoft SQLServer Date Types

¨ SQLServer 2005 and earlier provide very different 
date/time support
¤ DATETIME – more like standard TIMESTAMP type

n Represents both date and time
n Jan 1, 1753 – Dec 31, 9999; precision of 3.33ms (???)

¤ SMALLDATETIME
n Jan 1, 1900 – Jun 6, 2079; precision of 1 minute

¤ No ability to represent only a date, or only a time!
¨ SQLServer 2008 adds more standard-like support

¤ DATE, TIME, DATETIME2 – similar to standard types
¤ DATETIMEOFFSET – date/time value plus timezone

10



Date and Time Formats

¨ Date and time values follow specific formats
¤ Enclosed in single-quotes

¨ Examples:  MER-A “Spirit” launch time
¤ Timestamp value (UT; +0):

'2003-06-10 17:58:46.773'
¤ Date value:  '2003-06-10'
¤ Time value:  '17:58:47'

¨ Can have invalid date/time values:
¤ Invalid time:  '25:14:68'
¤ Invalid date:  '2001-02-31'
¤ Some DBMSes can allow partial/invalid dates and times, if 

required by an application

11



Date and Time Formats (2)

¨ Most DBMSes support many date/time formats
¨ Most widely supported is ISO-8601 date/time 

format
¤ ISO-8601 format:

'2003-06-10 17:58:46.773'
n year-month-day hour:minutes:seconds.milliseconds
n Sometimes date and time are separated by “T” character
n Time is in 24-hour time format
n Optional timezone specification at end

¤ Other formats:
'June 10, 2003 5:58:46 PM'
'10-Jun-2003 17:58:46.773'

¤ Most databases can parse all of these

12



“Current Time” Values

¨ Several functions provide current date and time 
values
CURRENT_DATE()
CURRENT_TIME()
CURRENT_TIMESTAMP()
¤ Include time zone information
LOCALTIME()
LOCALTIMESTAMP()
¤ Don’t include time zone information

¨ Usually many other functions too, e.g. NOW()
¤ Nonstandard, but widely supported

13



Components of Dates and Times

¨ Date and time values are not atomic
¤ Not really allowed in the Relational Model…
¤ (In reality, many SQL types are not atomic)

¨ SQL provides a function to extract components of 
dates and times
¤ EXTRACT (field FROM value)
¤ Can specify:

n YEAR, MONTH, DAY, HOUR, MINUTE, SECOND
n TIMZEONE_HOUR, TIMEZONE_MINUTE

¤ Many other (nonstandard but common) options too
n week of year, day of year, day of week, quarter, century, …

14



Example Date Operation

¨ Sales records:
CREATE TABLE salesrecords (
sale_id INTEGER PRIMARY KEY,
cust_id INTEGER NOT NULL,
sale_time TIMESTAMP NOT NULL,
sales_total NUMERIC(8, 2) NOT NULL,
...

);
¨ Compute monthly sales totals:

¤ Start by finding month of each sale
SELECT sale_id,
EXTRACT (MONTH FROM sale_time) AS sale_month
FROM salesrecords;

¤ Build larger query using this information

15



Time Intervals

¨ INTERVAL
¤ Data type for time intervals
¤ Supports operations on dates and times
¤ Also supports a precision:  INTERVAL(P)

¨ If x and y are date values:
x – y produces an INTERVAL

¨ If i is an INTERVAL value:
x + i or x – i produces a date value

¨ Can use INTERVAL to specify fixed intervals
¤ INTERVAL 1 WEEK
¤ INTERVAL '1 WEEK'

16



Example Date Schema

¨ Event database schema:
CREATE TABLE event (
event_id INTEGER      PRIMARY KEY,
event_type VARCHAR(20) NOT NULL,
event_date DATE NOT NULL,
event_desc VARCHAR(200)

);

¨ To generate notices of upcoming events:
SELECT * FROM event
WHERE event_date >= CURRENT_DATE() AND

event_date <=
(CURRENT_DATE() + INTERVAL 1 WEEK);

17



Example Date Schema (2)

¨ Can rewrite to use BETWEEN syntax:
SELECT * FROM event
WHERE event_date BETWEEN

CURRENT_DATE() AND
(CURRENT_DATE() + INTERVAL 1 WEEK);

¨ Current date/time functions are evaluated only 
once during a query!  J
¤ e.g. query will see one value for CURRENT_TIME()

even if it runs for an extended period of time

18



“Large Object” Types

¨ SQL CHAR(N) and VARCHAR(N) types have 
limited sizes
¤ For CHAR, usually N < 256
¤ For VARCHAR, usually N < 65536

¨ BLOB and CLOB types support larger data sizes
¤ “LOB” = Large Object
¤ Useful for storing images, documents, etc.
¤ Support varies widely across DBMSes
¤ TEXT is also rather common

n Large text fields, e.g. MB or GB of text data

19



Example Schema

¨ Schema for storing book reviews:
CREATE TABLE bookreview (
review_id   INT PRIMARY KEY,
book_title  VARCHAR(50) NOT NULL,
book_image  BLOB,
reviewer    VARCHAR(30) NOT NULL,
pub_time    TIMESTAMP NOT NULL,
review_text CLOB NOT NULL,
UNIQUE (book_title, reviewer)

);

¨ Review text can be large
¨ Can also include a book image, if desired

20



Large Object Notes

¨ General support for “large object” types is usually 
focused on smaller objects
¤ No larger than a few 10s of KBs
¤ A few MBs is definitely pushing it

¨ Most expensive part is moving large objects into and 
out of database
¤ For simple, general purpose DBMSes, can involve 

constructing large SQL statements with escaped data

¨ Databases also don’t store this information very 
efficiently

21



Large Object Notes (2)

¨ For objects larger than ~100 KB, should definitely use 
the filesystem
¤ That’s what it’s designed for!
¤ Store filesystem paths in the database instead

¨ For smaller objects that are frequently retrieved, storing 
on filesystem can take load off database
¤ e.g. user icons for a social networking website
¤ Let webserver serve them directly from the filesystem –

again, it knows how to do that kind of thing more quickly
¨ Some DBMSes have specialized support for storing and 

manipulating very large objects
¤ Just don’t expect your application to be easily portable…

22



Default Values

¨ Can specify default values for columns
n colname type DEFAULT expr

¤ Can specify an actual value
n book_rating INT DEFAULT 3

¤ Can specify an expression
n pub_time TIMESTAMP DEFAULT NOW()

¨ If default value is unspecified, DB will use NULL
¨ Affects INSERT statements

¤ Columns with default values don’t have to be specified
¤ Columns without a default value must be specified at insert-

time!

23



Serial Primary Key Values

¨ Many databases offer special support for integer 
primary keys
¤ DB will generate unique values for use as primary keys

¨ Examples:
¤ PostgreSQL and MySQL:

CREATE TABLE employee (
emp_id SERIAL PRIMARY KEY,
...

¤ Microsoft SQLServer:
CREATE TABLE employee (
emp_id INT IDENTITY PRIMARY KEY,
...

24



Updated Book Review Schema

CREATE TABLE bookreview (
review_id   SERIAL      PRIMARY KEY,
book_title  VARCHAR(50) NOT NULL,
book_image  BLOB,
reviewer    VARCHAR(30) NOT NULL,
pub_time    TIMESTAMP   NOT NULL DEFAULT NOW(),
book_rating INT         NOT NULL DEFAULT 3,
review_text CLOB        NOT NULL,
UNIQUE (book_title, reviewer)

);

¨ Every new review gets a unique ID value
¨ Publication time is set to current time when review is added to 

database
¨ Default book rating is 3 out of 5

25



Altering Table Schemas

¨ SQL ALTER TABLE command allows schema 
changes

¨ Wide variety of operations
¤ Rename a table
¤ Add and remove constraints
¤ Add and remove table columns
¤ Change the type of a column
¤ Change default values for columns

¨ Very useful for migrating schema to new version
¤ Migration process must be carefully designed…

¨ Again, support varies across DBMSes

26



Example Alterations

¨ Rename the bookreview table:
ALTER TABLE bookreview
RENAME TO item_review;

¨ Remove the book image column:
ALTER TABLE bookreview
DROP COLUMN book_image;

¨ Add a constraint to the bookreview table:
ALTER TABLE bookreview
ADD CHECK (book_rating BETWEEN 1 AND 5);

27



Table Alteration Notes

¨ Can drop columns from tables
¤ What if the column is a key?
¤ What if the column is referenced by a view?
¤ Can often specify CASCADE to delete dependent objects,

if desired
¨ Newly added columns must have a default value

¤ Existing rows in database get default value for new column
¨ Changing table schema can be very expensive

¤ Some operations can require scanning or rewriting the entire 
table
n Some DBs do this for all schema-alteration commands, e.g. MySQL

¤ e.g. adding a new constraint requires a table scan

28



Temporary Tables

¨ Sometimes want to generate and store relations 
temporarily
¤ Complex operations implemented as multiple queries
¤ This is relational algebra assignment operation:  ¬

¨ SQL provides temporary tables for these cases
¤ Table’s contents are associated with client’s session
¤ Clients can’t access each others’ temp table data

¨ SQL standard specifies global temporary tables
¤ Temporary table has a global name and schema
¤ Only the contents of the temporary table are per-client
¤ When client disconnects, their temporary data is purged

29



Temporary Tables (2)

¨ Many databases also provide local temporary tables
¤ Table’s schema is also local to client session
¤ When client disconnects, the table is dropped
¤ Different clients can use same table name with different 

schemas

¨ Client can manually purge data from temp tables 
when needed
¤ In case of local temp tables, can also drop them anytime 

during session

30



Temporary Table Syntax

¨ Simple variation of CREATE TABLE syntax
¤ Add TEMPORARY (or GLOBAL TEMPORARY) to 

command
¨ Example:

¤ Make a temporary table to store counts of sales 
grouped by month
CREATE TEMPORARY TABLE salesbymonth (
sale_month INT NOT NULL,
num_sales  INT NOT NULL

);

31



Temporary Table Example

¨ Can populate temp table with computed values
INSERT INTO salesbymonth

SELECT EXTRACT (MONTH FROM sale_time) AS mon,
COUNT(*)

FROM salesrecords GROUP BY mon;

¤ Only need to perform computations once
¤ Can improve efficiency of large or multi-step operations
¤ Temporary results are cleaned up at end of session

¨ Issue queries against temporary table and use results
SELECT sale_month, num_sales, promotion_desc
FROM salesbymonth

JOIN promotions USING (sale_month);

32



Using Temporary Tables

¨ Temporary tables can dramatically improve 
performance of certain queries

¨ Approach:
¤ Create temporary table to store useful but costly 

intermediate results
n Don’t use many (or any) constraints – want to be fast!

¤ Populate temporary table via INSERT … SELECT
statement

¤ Use temporary table to compute other results
¤ Temporary table goes away automatically, at end of 

transaction, or at end of session

35



Alternate Temp-Table Syntaxes

¨ Databases frequently support alternate syntaxes 
for creating and populating temporary tables
¤ Simplify the common case!

¨ One common syntax (e.g. MySQL, Postgres, Oracle):
CREATE TEMPORARY TABLE tblname AS 
select_stmt;

¨ Another common syntax (e.g. Postgres, SQLServer):
SELECT ... INTO TEMPORARY TABLE ...;

¨ Both syntaxes can also create non-temporary tables

36



Real-World Example

¨ A query run on an older MySQL server instance:
SELECT ident, total_a / total_b AS ratio
FROM (SELECT CONCAT(a1, a2) AS ident,

SUM(val_a) AS total_a
FROM t1 GROUP BY ident) AS result1,

(SELECT CONCAT(a1, a2) AS ident,
SUM(val_b) AS total_b

FROM t2 GROUP BY ident) AS result2
WHERE result1.ident = result2.ident;

¨ Overall query takes ~15 mins to execute on fast server
¨ Inner queries complete in << 1 second by themselves

37



Real-World Example (2)

¨ MySQL query:
SELECT ident, total_a / total_b AS ratio
FROM (SELECT CONCAT(a1, a2) AS ident,

SUM(val_a) AS total_a
FROM t1 GROUP BY ident) AS result1,
(SELECT CONCAT(a1, a2) AS ident,

SUM(val_b) AS total_b
FROM t2 GROUP BY ident) AS result2

WHERE result1.ident = result2.ident;
¨ Problem is that MySQL cannot efficiently join two 

derived results using a computed column
¤ A limitation of MySQL’s join processor L

38



Real-World Example (3)

¨ A solution:
¤ First, create temporary tables to hold intermediate results

CREATE TEMPORARY TABLE temp1 AS
SELECT CONCAT(a1, a2) AS ident,

SUM(val_a) AS total_a
FROM t1 GROUP BY ident;

n …same with other inner query…
¤ Second, create indexes on temporary tables
¤ Finally, issue outer query against temporary tables

¨ Result:
¤ Entire process, including create/drop temp tables,

takes < 1 second (as opposed to ~15 minutes)

39


