
SQL DATA DEFINITION:
KEY CONSTRAINTS
CS121: Relational Databases
Fall 2018 – Lecture 7

Data Definition

¨ Covered most of SQL data manipulation operations
¨ Continue exploration of SQL data definition features

¤ Specifying tables and their columns (lecture 4)
¤ Declaring views of the logical-level schema (lecture 6)
¤ Specifying constraints on individual columns, or entire tables
¤ Providing stored procedures to manipulate data
¤ Specifying security access constraints
¤ …and more!

2

Data Definition (2)

¨ We will focus on the mechanics of data definition
¨ For now, ignoring a very important question:

¤ Exactly what is a “good” database schema, anyway??!
¨ General design goals:

¤ Should be able to fully represent all necessary details and
relationships in the schema

¤ Try to eliminate the ability to store invalid data
¤ Many other design goals too (security, performance)

n Sometimes these design goals conflict with each other…

¨ DBMSes can enforce many different constraints
¤ Want to leverage this capability to ensure correctness

3

Catalogs and Schemas

¨ SQL provides hierarchical grouping capabilities for
managing collections of tables
¤ Also separate namespaces for different collections of tables

¨ Standard mechanism has three levels:
¤ Catalogs
¤ Schemas
¤ Tables
¤ Each level is assigned a name
¤ Within each container, names must be unique

¨ Allows multiple applications to use the same server
¤ Even multiple instances of a particular application

4

Catalogs and Schemas (2)

¨ Every table has a full name:
¤ catalog.schema.table

¨ Database systems vary widely on implementation of
these features!
¤ Catalog functionality not covered by SQL specification
¤ Schema and table levels are specified
¤ Most DBMSes offer some kind of grouping

¨ Common behaviors:
¤ “Databases” generally correspond to catalogs

n CREATE DATABASE web_db;
¤ Schema-level grouping is usually provided

n CREATE SCHEMA blog_schema;

5

Using a Database

¨ Normally, must connect to a database server to use it
¤ Specify a username and password, among other things

¨ Each database connection has its own environment
¤ “Session state” associated with that client
¤ Can specify the catalog and schema to use

n e.g. USE bank; to use the banking database
n e.g. Specifying database user_db to the MySQL client

¤ All operations will use that catalog and schema by default
¤ Can frequently override using full names for tables, etc.

6

Creating Tables

¨ General form:
CREATE TABLE name (
attr1 type1,
attr2 type2,
...

);

¨ SQL provides a variety of standard column types
¤ INT, CHAR(N), VARCHAR(N), DATE, etc.
¤ (see Lecture 4 for more details about basic column types)

¨ Table and column names must follow specific rules
¨ Table must have a unique name within schema
¨ All columns must have unique names within the table

7

Table Constraints

¨ By default, SQL tables have no constraints
¤ Can insert multiple copies of a given row
¤ Can insert rows with NULL values in any column

¨ Can specify columns that comprise primary key
CREATE TABLE account (
account_number CHAR(10),
branch_name VARCHAR(20),
balance NUMERIC(12, 2),
PRIMARY KEY (account_number)

);
¤ No two rows can have same values for primary key
¤ A table can have only one primary key

8

Primary Key Constraints

¨ Alternate syntax for primary keys
CREATE TABLE account (
account_number CHAR(10) PRIMARY KEY,
branch_name VARCHAR(20),
balance NUMERIC(12, 2)

);
¤ Can only be used for single-column primary keys!

¨ For multi-column primary keys, must specify primary key after
column specifications

CREATE TABLE depositor (
customer_name VARCHAR(30),
account_number CHAR(10),
PRIMARY KEY (customer_name, account_number)

);

9

Null-Value Constraints

¨ Every attribute domain contains null by default
¤ Same with SQL: every column can be set to NULL, if it isn’t

part of a primary key

¨ Often, NULL is not an acceptable value!
¤ e.g. bank accounts must always have a balance

¨ Can specify NOT NULL to exclude NULL values for
particular columns
¤ NOT NULL constraint specified in column declaration itself

¨ Stating NOT NULL for primary key columns is
unnecessary and redundant

10

Account Relation

¨ Account number is a primary key
¤ Already cannot be NULL

¨ Branch name and balance also should always be
specified
¤ Add NOT NULL constraints to those columns

¨ SQL:
CREATE TABLE account (
account_number CHAR(10) PRIMARY KEY,
branch_name VARCHAR(20) NOT NULL,
balance NUMERIC(12, 2) NOT NULL

);

11

Other Candidate Keys

¨ Some relations have multiple candidate keys
¨ Can specify candidate keys with UNIQUE constraints

¤ Like primary key constraints, can specify candidate keys in
the column declaration, or after all columns

¤ Can only specify multi-column candidate key after the
column specifications

¨ Unlike primary keys, UNIQUE constraints do not
exclude NULL values!
¤ This constraint considers NULL values to be unequal!
¤ If some attributes in the UNIQUE constraint allow NULLs,

DB will allow multiple rows with the same values!

12

UNIQUE Constraints

¨ Example: An employee relation
CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_ssn CHAR(9) NOT NULL UNIQUE,
emp_name VARCHAR(40) NOT NULL,
...

);
¤ Employee’s ID is the primary key
¤ All employees need a SSN, but no two employees should

have the same SSN
n Don’t forget NOT NULL constraint too!

¤ All employees should have a name, but multiple employees
might have same name

13

UNIQUE and NULL

¨ Example:
CREATE TABLE customer (
cust_name VARCHAR(30) NOT NULL,
address VARCHAR(60),
UNIQUE (cust_name, address)

);

¨ Try inserting values:
INSERT INTO customer
VALUES ('John Doe', '123 Spring Lane');

INSERT INTO customer
VALUES ('John Doe', '123 Spring Lane');

¤ Second insert fails, as expected:
Duplicate entry 'John Doe-123 Spring Lane' for
key 'cust_name'

14

UNIQUE and NULL (2)

¨ Example:
CREATE TABLE customer (
cust_name VARCHAR(30) NOT NULL,
address VARCHAR(60),
UNIQUE (cust_name, address)

);

¨ Try inserting more values:
INSERT INTO customer VALUES ('Jane Doe', NULL);
INSERT INTO customer VALUES ('Jane Doe', NULL);
¤ Both inserts succeed!

¨ Be careful using nullable columns in UNIQUE constraints!
¤ Usually, you really want to specify NOT NULL for all columns that

appear in UNIQUE constraints

15

CHECK Constraints

¨ Often want to specify other constraints on values
¨ Can require values in a table to satisfy some

predicate, using a CHECK constraint
¤ Very effective for constraining columns’ domains, and

eliminating obviously bad inputs
¨ CHECK constraints must appear after the column

specifications
¨ In theory, can specify any expression that generates a

Boolean result
¤ This includes nested subqueries!
¤ In practice, DBMS support for CHECK constraints varies

widely, and is often quite limited

16

CHECK Constraint Examples

¨ Can constrain values in a particular column:
CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_ssn CHAR(9) NOT NULL UNIQUE,
emp_name VARCHAR(40) NOT NULL,
pay_rate NUMERIC(5,2) NOT NULL,
CHECK (pay_rate > 5.25)

);

¨ Ensures that all employees have a minimum wage

17

CHECK Constraint Examples (2)

CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_ssn CHAR(9) NOT NULL UNIQUE,
emp_name VARCHAR(40) NOT NULL,
status VARCHAR(10) NOT NULL,
pay_rate NUMERIC(5,2) NOT NULL,
CHECK (pay_rate > 5.25),
CHECK (status IN

('active', 'vacation', 'suspended'))
);

¨ Employee status must be one of the specified values
¤ Like an enumerated type
¤ (Many DBs provide similar support for enumerated types)

18

Another CHECK Constraint

¨ Depositor relation:
CREATE TABLE depositor (
customer_name VARCHAR(30),
account_number CHAR(10),
PRIMARY KEY (customer_name, account_number),
CHECK (account_number IN

(SELECT account_number FROM account))
);

¨ Rows in depositor table should only contain valid
account numbers!
¤ The valid account numbers appear in account table
¤ This is a referential integrity constraint

19

Another CHECK Constraint (2)

¨ Depositor relation:
CREATE TABLE depositor (
customer_name VARCHAR(30),
account_number CHAR(10),
PRIMARY KEY (customer_name, account_number),
CHECK (account_number IN

(SELECT account_number FROM account))
);

¨ When does this constraint need to be checked?
¤ When changes are made to depositor table
¤ Also when changes are made to account table!

20

CHECK Constraints

¨ Easy to write very expensive CHECK constraints
¨ CHECK constraints aren’t used very often

¤ Lack of widespread support; using them limits portability
¤ When used, they are usually very simple

n Enforce more specific constraints on data values, or enforce string
format constraints using regular expressions, etc.

¤ Avoid huge performance impacts!

¨ Don’t use CHECK constraints for referential integrity J
¤ There’s a better way!

21

Referential Integrity Constraints

¨ Referential integrity constraints are very important!
¤ These constraints span multiple tables
¤ Allow us to associate data across multiple tables
¤ One table’s values are constrained by another table’s values

¨ A relation can specify a primary key
¤ A set of attributes that uniquely identifies each tuple in the

relation
¨ A relation can also include attributes of another

relation’s primary key
¤ Called a foreign key
¤ Referencing relation’s values for the foreign key must also

appear in the referenced relation

22

Referential Integrity Constraints (2)

¨ Given a relation r(R)
¤ K Í R is the primary key for R

¨ Another relation s(S) references r
¤ K Í S too
¤ á " ts Î s : $ tr Î r : ts[K] = tr[K] ñ

¨ Also called a subset dependency
¤PK(s) Í PK(r)
¤ Foreign-key values in s must be a subset of primary-key

values in r

23

SQL Foreign Key Constraints

¨ Like primary key constraints, can specify in multiple ways
¨ For a single-column foreign key, can specify in column

declaration
¨ Example:

CREATE TABLE depositor (
customer_name VARCHAR(30) REFERENCES customer,
account_number CHAR(10) REFERENCES account,
PRIMARY KEY (customer_name, account_number),

);
¤ Foreign key refers to primary key of referenced relation

¨ Foreign-key constraint does NOT imply NOT NULL!
¤ Must explicitly add this, if necessary
¤ In this example, PRIMARY KEY constraint eliminates NULLs

24

Foreign Key Constraints (2)

¨ Can also specify the column in the referenced
relation

¨ Especially useful when referenced column is a
candidate key, but not the primary key

¨ Example:
¤ Employees have both company-assigned IDs and social

security numbers
¤ Health benefit information in another table, tied to

social security numbers

25

Foreign Key Example

¨ Employee information:
CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_ssn CHAR(9) NOT NULL UNIQUE,
emp_name VARCHAR(40) NOT NULL,
...

);
¨ Health plan information:

CREATE TABLE healthplan (
emp_ssn CHAR(9) PRIMARY KEY

REFERENCES employee (emp_ssn),
provider VARCHAR(20) NOT NULL,
pcp_id INT NOT NULL,
...

);

26

Multiple Constraints

¨ Can combine several different constraints
emp_ssn CHAR(9) PRIMARY KEY

REFERENCES employee (emp_ssn)

¤ emp_ssn is primary key of healthplan relation
¤ emp_ssn is also a foreign key to employee relation
¤ Foreign key references the candidate-key

employee.emp_ssn

27

Self-Referencing Foreign Keys

¨ A relation can have a foreign key reference to itself
¤ Common for representing hierarchies or graphs

¨ Example:
CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp_ssn CHAR(9) NOT NULL UNIQUE,
emp_name VARCHAR(40) NOT NULL,
...
manager_id INT REFERENCES employee

);
¤ manager_id and emp_id have the same domain – the set

of valid employee IDs
¤ Allow NULL manager IDs for employees with no manager

28

Alternate Foreign Key Syntax

¨ Can also specify foreign key constraints after all column
specifications
¤ Required for multi-column foreign keys

¨ Example:
CREATE TABLE employee (
emp_id INT,
emp_ssn CHAR(9) NOT NULL,
emp_name VARCHAR(40) NOT NULL,
...
manager_id INT,

PRIMARY KEY (emp_id),
UNIQUE (emp_ssn),
FOREIGN KEY (manager_id) REFERENCES employee

);

29

Multi-Column Foreign Keys

¨ Multi-column foreign keys can also be affected by
NULL values
¤ Individual columns may allow NULL values

¨ If all values in foreign key are non-NULL then the
foreign key constraint is enforced

¨ If any value in foreign key is NULL then the
constraint cannot be enforced!
¤ Or, “the constraint is defined to hold” (lame…)

30

Example Bank Schema

¨ Account relation:
CREATE TABLE account (
account_number VARCHAR(15) NOT NULL,
branch_name VARCHAR(15) NOT NULL,
balance NUMERIC(12,2) NOT NULL,
PRIMARY KEY (account_number)

);

¨ Depositor relation:
CREATE TABLE depositor (
customer_name VARCHAR(15) NOT NULL,
account_number VARCHAR(15) NOT NULL,
PRIMARY KEY (customer_name, account_number),
FOREIGN KEY (account_number) REFERENCES account,
FOREIGN KEY (customer_name) REFERENCES customer

);

31

Foreign Key Violations

¨ Several ways to violate foreign key constraints
¨ If referencing relation gets a bad foreign-key value,

the operation is simply forbidden
¤ e.g. trying to insert a row into depositor relation, where the

row contains an invalid account number
¤ e.g. trying to update a row in depositor relation, trying to

change customer name to an invalid value

¨ More subtle issues when the referenced relation is
changed
¤ What to do with depositor if a row is deleted from account?

32

Example Bank Data

¨ account data:

¨ depositor data:

Try to delete A-222 from account. What should happen?

+----------------+-------------+---------+
| account_number | branch_name | balance |
+----------------+-------------+---------+
| ... |
A-215	Mianus	700.00
A-217	Brighton	750.00
A-222	Redwood	700.00
A-305	Round Hill	350.00
...		
+----------------+-------------+---------+		
+---------------+----------------+		
customer_name	account_number	
+---------------+----------------+		
...		
Smith	A-215	
Jones	A-217	
Lindsay	A-222	
Turner	A-305	
...		
+---------------+----------------+

33

Foreign Key Violations

¨ Option 1: Disallow the delete from account
¤ Force the user to remove all rows in depositor relation that

refer to A-222
¤ Then user may remove row A-222 in account relation
¤ Default for SQL. Also a pain, but probably a good choice.

¨ Option 2: Cascade the delete operation
¤ If user deletes A-222 from account relation, all referencing

rows in depositor should also be deleted
¤ Seems reasonable; rows in depositor only make sense in

context of corresponding rows in account

34

Foreign Key Violations (2)

¨ Option 3: Set foreign key value to NULL
¤ If primary key goes away, update referencing row to

indicate this.
¤ Foreign key column can’t specify NOT NULL constraint

¤ Doesn’t make sense in every situation
n Doesn’t make sense in account and depositor example!

¨ Option 4: Set foreign key value to some default
¤ Can specify a default value for columns
¤ (Haven’t talked about how to do this in SQL, yet.)

35

Cascading Changes

¨ Can specify behavior on foreign key constraint
CREATE TABLE depositor (
...
FOREIGN KEY (account_number) REFERENCES account

ON DELETE CASCADE,
FOREIGN KEY (customer_name) REFERENCES customer

ON DELETE CASCADE
);

¤ When account A-222 is deleted from account relation,
corresponding rows in depositor will be deleted too

¤ Read: “When a row is deleted from referenced relation,
corresponding rows are deleted from this relation.”

¨ Similar considerations for updates to primary key values
in the referenced relation
¤ Can also specify ON UPDATE behaviors

36

Summary

¨ Integrity constraints are a very powerful feature of
the relational model

¨ SQL provides many ways to specify and enforce
constraints
¤ Actual support for different kinds of constraints varies

among DBMSes
¨ Allows a database to exclude all invalid values
¨ Database can also resolve some integrity violations
automatically
¤ e.g. cascade deletion of rows from referencing relations, or

setting foreign key values to NULL

37

