SQL DATA DEFINITION:
KEY CONSTRAINTS

Data Definition

Covered most of SQL data manipulation operations

Continue exploration of SQL data definition features
Specifying tables and their columns (lecture 4)
Declaring views of the logical-level schema (lecture 6)
Specifying constraints on individual columns, or entire tables
Providing stored procedures to manipulate data

Specifying security access constraints

...and morel!

Data Definition (2)

We will focus on the mechanics of data definition

For now, ignoring a very important question:
Exactly what is a “good” database schema, anyway?22!

General design goals:

Should be able to fully represent all necessary details and
relationships in the schema

Try to eliminate the ability to store invalid data

Many other design goals too (security, performance)
Sometimes these design goals conflict with each other...

DBMSes can enforce many different constraints
Want to leverage this capability to ensure correctness

Catalogs and Schemas

SQL provides hierarchical grouping capabilities for
managing collections of tables

Also separate namespaces for different collections of tables

Standard mechanism has three levels:
Catalogs
Schemas
Tables
Each level is assigned a name
Within each container, names must be unique
Allows multiple applications to use the same server
Even multiple instances of a particular application

Catalogs and Schemas (2)

Every table has a full name:
catalog.schema.table
Database systems vary widely on implementation of
these features!
Catalog functionality not covered by SQL specification
Schema and table levels are specified
Most DBMSes offer some kind of grouping

Common behaviors:

“Databases” generally correspond to catalogs
CREATE DATABASE web db;

Schema-level grouping is usually provided
CREATE SCHEMA blog schema;

Using a Database

Normally, must connect to a database server to use it

Specify a username and password, among other things

Each database connection has its own environment

“Session state” associated with that client

Can specify the catalog and schema to use
e.g. USE bank; to use the banking database
e.g. Specifying database user db to the MySQL client

All operations will use that catalog and schema by default

Can frequently override using full names for tables, etc.

Creating Tables

General form:
CREATE TABLE name (
attrl typel,
attr2 type2,

) ;

SQL provides a variety of standard column types
INT, CHAR (N), VARCHAR (N), DATE, efc.
(see Lecture 4 for more details about basic column types)

Table and column names must follow specific rules
Table must have a unique name within schema
All columns must have unique names within the table

Table Constraints

By default, SQL tables have no constraints
Can insert multiple copies of a given row
Can insert rows with NULL values in any column

Can specify columns that comprise primary key
CREATE TABLE account (
account number CHAR(10),
branch name VARCHAR (20) ,
balance NUMERIC (12, 2),
PRIMARY KEY (account number)
) ;
No two rows can have same values for primary key
A table can have only one primary key

Primary Key Constraints

Alternate syntax for primary keys
CREATE TABLE account (

account number CHAR(10) PRIMARY KEY,
branch name VARCHAR (20) ,
balance NUMERIC (12, 2)

) ;

Can only be used for single-column primary keys!

For multi-column primary keys, must specify primary key after
column specifications
CREATE TABLE depositor (
customer name VARCHAR(30),
account number CHAR(10),
PRIMARY KEY (customer name, account number)

) ;

Null-Value Constraints

Every attribute domain contains null by default

Same with SQL: every column can be set to NULL, if it isn’t
part of a primary key

Often, NULL is not an acceptable value!

e.g. bank accounts must always have a balance
Can specify NOT NULL to exclude NULL values for
particular columns

NOT NULL constraint specified in column declaration itself

Stating NOT NULL for primary key columns is
unnecessary and redundant

Account Relation

Account number is a primary key

Already cannot be NULL
Branch name and balance also should always be
specified

Add NOT NULL constraints to those columns

SQL:

CREATE TABLE account (
account number CHAR(10) PRIMARY KEY,
branch name VARCHAR (20) NOT NULL,

balance NUMERIC (12, 2) NOT NULL
) ;

Other Candidate Keys

Some relations have multiple candidate keys
Can specify candidate keys with UNIQUE constraints

Like primary key constraints, can specify candidate keys in
the column declaration, or after all columns

Can only specify multi-column candidate key after the
column specifications

Unlike primary keys, UNIQUE constraints do not
exclude NULL values!
This constraint considers NULL values to be unequal!

If some attributes in the UNIQUE constraint allow NULLs,
DB will allow multiple rows with the same values!

UNIQUE Constraints

Example: An employee relation

CREATE TABLE employee (
emp id INT PRIMARY KEY,

emp ssn CHAR(9) NOT NULL UNIQUE,
emp name VARCHAR(40) NOT NULL,

) ;
Employee’s ID is the primary key
All employees need a SSN, but no two employees should
have the same SSN
Don’t forget NOT NULL constraint too!

All employees should have a name, but multiple employees
might have same name

UNIQUE and NULL

Example:
CREATE TABLE customer (
cust name VARCHAR(30) NOT NULL,
addf;ss VARCHAR (60) ,
UNIQUE (cust name, address)
) ;
Try inserting values:
INSERT INTO customer

VALUES ('John Doe', 'l123 Spring Lane');
INSERT INTO customer
VALUES ('John Doe', '123 Spring Lane');

Second insert fails, as expected:

Duplicate entry 'John Doe-123 Spring Lane' for
key 'cust name'

UNIQUE and NULL (2)

Example:

CREATE TABLE customer (
cust name VARCHAR(30) NOT NULL,
address VARCHAR (60) ,
UNIQUE (cust name, address)

)
Try inserting more values:
INSERT INTO customer VALUES ('Jane Doe', NULL);
INSERT INTO customer VALUES ('Jane Doe', NULL);
Both inserts succeed!
Be careful using nullable columns in UNIQUE constraints!

Usually, you really want to specify NOT NULL for all columns that
appear in UNIQUE constraints

CHECK Constraints

Often want to specify other constraints on values
Can require values in a table to satisfy some
predicate, using a CHECK constraint

Very effective for constraining columns’ domains, and
eliminating obviously bad inputs

CHECK constraints must appear after the column
specifications

In theory, can specify any expression that generates a
Boolean result
This includes nested subqueries!

In practice, DBMS support for CHECK constraints varies
widely, and is often quite limited

CHECK Constraint Examples

Can constrain values in a particular column:
CREATE TABLE employee (
emp id INT PRIMARY KEY,
emp ssn CHAR(9) NOT NULL UNIQUE,
emp name VARCHAR(40) NOT NULL,
pay rate NUMERIC(5,2) NOT NULL,
CHECK (pay rate > 5.25)

) ;
Ensures that all employees have a minimum wage

CHECK Constraint Examples (2)

CREATE TABLE employee (
emp id INT PRIMARY KEY,

emp ssn CHAR(9) NOT NULL UNIQUE,
emp name VARCHAR(40) NOT NULL,
status VARCHAR (10) NOT NULL,
pay rate NUMERIC(5,2) NOT NULL,
CHECK (pay rate > 5.25),
CHECK (status IN
('active', 'vacation', 'suspended'))
) ;
Employee status must be one of the specified values

Like an enumerated type
(Many DBs provide similar support for enumerated types)

Another CHECK Constraint

Depositor relation:

CREATE TABLE depositor (
customer name VARCHAR(30),
account number CHAR(10),
PRIMARY KEY (customer name, account number),
CHECK (account number IN
(SELECT account number FROM account))

) ;
Rows in depositor table should only contain valid
account numbers!
The valid account numbers appear in account table
This is a referential integrity constraint

Another CHECK Constraint (2)

Depositor relation:
CREATE TABLE depositor (
customer name VARCHAR(30),
account number CHAR(10),
PRIMARY KEY (customer name, account number),
CHECK (account number IN
(SELECT account number FROM account))
) ;
When does this constraint need to be checked?

When changes are made to depositor table

Also when changes are made to account table!

CHECK Constraints

Easy to write very expensive CHECK constraints

CHECK constraints aren’t used very often

Lack of widespread support; using them limits portability

When used, they are usually very simple

Enforce more specific constraints on data values, or enforce string
format constraints using regular expressions, etc.

Avoid huge performance impacts!
Don’t use CHECK constraints for referential integrity ©

There’s a better way!

Referential Integrity Constraints

Referential integrity constraints are very important!
These constraints span multiple tables
Allow us to associate data across multiple tables
One table’s values are constrained by another table’s values
A relation can specify a primary key

A set of attributes that uniquely identifies each tuple in the
relation

A relation can also include attributes of another
relation’s primary key
Called a foreign key

Referencing relation’s values for the foreign key must also
appear in the referenced relation

Referential Integrity Constraints (2)

Given a relation r(R)
K C R is the primary key for R
Another relation s(S) references r
K < S too
(Vtes:dt er:t[K] =t[K])
Also called a subset dependency
[i(s) < Lk(r)

Foreign-key values in s must be a subset of primary-key
values in r

SQL Foreign Key Constraints

Like primary key constraints, can specify in multiple ways

For a single-column foreign key, can specify in column
declaration

Example:

CREATE TABLE depositor (
customer name VARCHAR(30) REFERENCES customer,
account number CHAR(10) REFERENCES account,
PRIMARY KEY (customer name, account number),

) ;

Foreign key refers to primary key of referenced relation

Foreign-key constraint does NOT imply NOT NULL!

Must explicitly add this, if necessary
In this example, PRIMARY KEY constraint eliminates NULLs

Foreign Key Constraints (2)

Can also specify the column in the referenced
relation

Especially useful when referenced column is o
candidate key, but not the primary key
Example:

Employees have both company-assigned IDs and social
security numbers

Health benefit information in another table, tied to
social security numbers

Foreign Key Example

Employee information:

CREATE TABLE employee (
emp id INT PRIMARY KEY,

emp ssn CHAR(9) NOT NULL UNIQUE,
emp name VARCHAR(40) NOT NULL,

) ;
Health plan information:

CREATE TABLE healthplan (

emp ssn CHAR(9) PRIMARY KEY
REFERENCES employee (emp ssn),

provider VARCHAR (20) NOT NULL,

pcp_id INT NOT NULL,

) ;

Multiple Constraints

Can combine several different constraints

emp ssn CHAR(9) PRIMARY KEY
REFERENCES employee (emp ssn)

emp_ssn is primary key of healthplan relation
emp_ssn is also a foreign key to employee relation

Foreign key references the candidate-key
employee.emp_ssn

Self-Referencing Foreign Keys

A relation can have a foreign key reference to itself
Common for representing hierarchies or graphs

Example:
CREATE TABLE employee (
emp_id INT PRIMARY KEY,
emp ssn CHAR (9) NOT NULL UNIQUE,

emp name VARCHAR (40) NOT NULL,

manager id INT REFERENCES employee
) ;
manager id and emp id have the same domain — the set
of valid employee IDs

Allow NULL manager IDs for employees with no manager

Alternate Foreign Key Syntax

Can also specify foreign key constraints after all column
specifications

Required for multi-column foreign keys

Example:
CREATE TABLE employee (
emp id INT,
emp ssn CHAR (9) NOT NULL,

emp name VARCHAR (40) NOT NULL,
manager id INT,
PRIMARY KEY (emp id),

UNIQUE (emp ssn),
FOREIGN KEY (manager id) REFERENCES employee

Multi-Column Foreign Keys

Multi-column foreign keys can also be affected by
NULL values

Individual columns may allow NULL values
If all values in foreign key are non-NULL then the
foreign key constraint is enforced

If any value in foreign key is NULL then the
constraint cannot be enforced!

Or, “the constraint is defined to hold” (lame...)

Example Bank Schema

Account relation:
CREATE TABLE account (
account number VARCHAR (15) NOT NULL,
branch name VARCHAR (15) NOT NULL,
balance NUMERIC(12,2) NOT NULL,
PRIMARY KEY (account number)
) ;
Depositor relation:
CREATE TABLE depositor (
customer name VARCHAR(15) NOT NULL,
account number VARCHAR(15) NOT NULL,
PRIMARY KEY (customer name, account number),
FOREIGN KEY (account number) REFERENCES account,
FOREIGN KEY (customer name) REFERENCES customer

Foreign Key Violations

Several ways to violate foreign key constraints

If referencing relation gets a bad foreign-key value,
the operation is simply forbidden

e.g. trying to insert a row into depositor relation, where the
row contains an invalid account number

e.g. trying to update a row in depositor relation, trying to
change customer name to an invalid value

More subtle issues when the referenced relation is
changed

What to do with depositor if a row is deleted from account?

Example Bank Data

account data: R . M N
y | account number | branch name | balance |
e e e et T +-———— - +
| ... I
A-215	Mianus	700.00
A-217	Brighton	750.00
A-222	Redwood	700.00
A-305	Round Hill	350.00
... I		
tmm e t-mm - +-——— - +		
dJ tor d t-— e o +		
eposiior ata:	customer name	account number
t-— =T e et e +		
... I		
Smith	A-215	
Jones	A-217	
Lindsay	A-222	
Turner	A-305	
I I
t-—mm o +

Try to delete A-222 from account. What should happen?

Foreign Key Violations

Option 1: Disallow the delete from account

Force the user to remove all rows in depositor relation that
refer to A-222

Then user may remove row A-222 in account relation

Default for SQL. Also a pain, but probably a good choice.

Option 2: Cascade the delete operation

If user deletes A-222 from account relation, all referencing
rows in depositor should also be deleted

Seems reasonable; rows in depositor only make sense in
context of corresponding rows in account

Foreign Key Violations (2)

Option 3: Set foreign key value to NULL

If primary key goes away, update referencing row to
indicate this.

Foreign key column can’t specify NOT NULL constraint

Doesn’t make sense in every situation

Doesn’t make sense in account and depositor example!

Option 4: Set foreign key value to some default

Can specify a default value for columns

(Haven'’t talked about how to do this in SQL, yet.)

Cascading Changes

Can specify behavior on foreign key constraint
CREATE TABLE depositor (

FOREIGN KEY (account number) REFERENCES account
ON DELETE CASCADE,

FOREIGN KEY (customer name) REFERENCES customer
ON DELETE CASCADE

)
When account A-222 is deleted from account relation,
corresponding rows in depositor will be deleted too

Read: “When a row is deleted from referenced relation,
corresponding rows are deleted from this relation.”

Similar considerations for updates to primary key values
in the referenced relation

Can also specify ON UPDATE behaviors

Summary

Integrity constraints are a very powerful feature of
the relational model

SQL provides many ways to specify and enforce
constraints

Actual support for different kinds of constraints varies
among DBMSes

Allows a database to exclude all invalid values
Database can also resolve some integrity violations

automatically

e.g. cascade deletion of rows from referencing relations, or
setting foreign key values to NULL

