SUBQUERIES AND VIEWS

String Comparisons and GROUP BY

Last time, introduced many advanced features of
SQL, including GROUP BY

Recall: string comparisons using = are
case-insensitive by default
SELECT 'HELLO' = 'hello'; -- Evaluates to true

This can also cause unexpected results with SQL
grouping and aggregation
Example: table of people’s favorite colors

CREATE TABLE favorite colors (
name VARCHAR (30) PRIMARY KEY,
color VARCHAR (30)

) ;

String Compares and GROUP BY (2)

Add data to our table:

INSERT INTO favorite colors VALUES ('Alice', 'BLUE');
INSERT INTO favorite colors VALUES ('Bob', 'Red');
INSERT INTO favorite colors VALUES ('Clara', 'blue');

How many people like each color?
SELECT color, COUNT(*) num people
FROM favorite colors GROUP BY color;

Even though “BLUE” and “blue” differ in case, they will
still end up in the same group!

Null Values in SQL

Like relational algebra, SQL represents missing
information with null values

NULL is a keyword in SQL
Typically written in all-caps
Use IS NULL and IS NOT NULL to check for null
values
attr = NULL is never true! (It is unknown.)
attr <> NULL is also never true! (Also unknown.)
Instead, write: attr IS NULL
Aggregate operations ignore NULL input values
COUNT returns O for an empty input multiset
All others return NULL for an empty input (even SUM |)

Comparisons and Unknowns

Relational algebra introduced the unknown truth-
value

Produced by comparisons with null

SQL also has tests for unknown values
comp IS UNKNOWN
comp IS NOT UNKNOWN

comp is some comparison operation

NULL in Inserts and Updates

Can specify NULL values in INSERT and UPDATE

stfatements

INSERT INTO account
VALUES ('A-315', NULL, 500);

Can clearly lead to some problems...
Primary key attributes are not allowed to have NULL
values

Other ways to specify constraints on NULL values for
specific attributes

Additional Join Operations

SQL-92 introduces additional join operations
natural joins
left /right /full outer joins
theta joins
Syntax varies from the basic “Cartesian product”
join syntax
All changes are in FROM clause

Varying levels of syntactic sugar...

Theta Join

One relational algebra operation we skipped

Theta join is a generalized join operation

Sometimes called a “condition join”

Written as: r Xg s
Abbreviation for: Gy(r X s)

Doesn’t include project operation like natural join and
outer joins do

No null-padded results, like outer joins have

SQL Theta Joins

SQL provides a syntax for theta joins

Example:

Associate customers and loan balances

SELECT * FROM borrower INNER JOIN loan ON
borrower.loan_number = loan.loan_number;

Result:

- - $-—m - - - 4o - - +
| customer name | loan number | loan number | branch name | amount
- —_———— +-———- ——————— +-———- ———————- +-—————- —————- - +
| Smith | L-11 | L-11 | Round Hill | 900.00

| Jackson | L-14 | L-14 | Downtown | 1500.00

| Hayes | L-15 | L-15 | Perryridge | 1500.00

| Adams | L-16 | L-16 | Perryridge | 1300.00

| | | | Downtown |

| ..

1000.00

SQL Theta Joins (2)

Syntax in FROM clause:
tablel INNER JOIN table2 ON condition

INNER is optional; just distinguishes from outer joins

No duplicate attribute names are removed

Can specify relation name, attribute names

tablel INNER JOIN table2 ON condition
AS rel (attrl, attr2, ...)

Very similar to a derived relation

Theta Joins on Multiple Tables

Can join across multiple tables with this syntax

Example: join customer, borrower, loan tables

Nested theta-joins:
SELECT * FROM customer AS c

JOIN borrower AS b ON
c.customer name = b.customer_name

JOIN loan AS 1 BN
b.loan number = 1l.loan number;

Generally evaluated left to right
Can use parentheses to specify join order

Order usually doesn’t affect results or performance
(if outer joins are involved, results can definitely change)

Theta Joins on Multiple Tables (2)

Join customer, borrower, loan tables: take 2

One Cartesian product and one theta join:

SELECT * FROM customer AS c
JOIN borrower AS b JOIN loan AS 1
ON c.customer name = b.customer name
AND b.loan number = 1l.loan number;

Database will optimize this anyway, but it really isn’t
two theta joins

Join Conditions

Can specify any condition (including nested
subqueries) in ON clause

Even conditions that aren’t related to join itself

Guideline:

Use ON clause for join conditions
Use WHERE clause for selecting rows

Mixing the two can cause lots of confusion!

Cartesian Products

Cartesian product can be specified as CROSS JOIN
Can’t specify an ON condition for a CROSS JOIN

Cartesian product of borrower and loan:
SELECT * FROM borrower CROSS JOIN loan;

Same as a theta join with no condition:

SELECT * FROM borrower INNER JOIN loan
ON TRUE;

Or, simply:
SELECT * FROM borrower JOIN loan;
SELECT * FROM borrower, loan;

Quter Joins

Can specify outer joins in SQL as well:

SELECT * FROM tablel
LEFT OUTER JOIN table2 ON condition;

SELECT * FROM tablel
RIGHT OUTER JOIN table2 ON condition;

SELECT * FROM tablel

FULL OUTER JOIN table2 ON condition;
OUTER is implied by LEFT /RIGHT /FULL, and can
therefore be left out

SELECT * FROM tablel LEFT JOIN table2 ON
condition;

Common Attributes

ON syntax is clumsy for simple joins

Also, it’s tempting to include conditions that should be in the
WHERE clause

Often, schemas are designed such that join columns
have the same names

e.g. borrower.loan_number and loan.loan_number

USING clause is a simplified form of ON

SELECT * FROM tl LEFT OUTER JOIN t2
USING (al, a2, ...);
Roughly equivalent to:

SELECT * FROM tl LEFT OUTER JOIN t2
ON (tl.al = t2.al AND tl.a2 = t2.a2 AND ...);

Common Attributes (2)

USING also eliminates duplicate join attributes

Result of join with USING (al, a2, ...) willonly
have one instance of each join column in the result

This is fine, because USING requires equal values for
the specified attributes

Example: tables r(a, b, ¢) and s(q, b, d)
SELECT * FROM r JOIN s USING (a)

Result schema is: (a, r.b, r.c, s.b, s.d)

Can use USING clause with INNER / OUTER joins
No condition allowed for CROSS JOIN

Natural Joins

SQL natural join operation:
SELECT * FROM tl NATURAL INNER JOIN t2;

INNER is optional, as usual

No ON or USING clause is specified
All common attributes are used in natural join
operation

To join on a subset of common attributes, use a regular
INNER JOIN, with a USING clause

Natural Join Example

Join borrower and loan relations:

SELECT * FROM borrower NATURAL JOIN loan;

Result:

t-—mm - e e e e t-—mm - - +
| loan number | customer name | branch name | amount |
+-—=== ———————- dom— - —————— +-—————- B L et +
L-11	Smith	Round Hill	900.00
L-14	Jackson	Downtown	1500.00
L-15	Hayes	Perryridge	1500.00
L-16	Adams	Perryridge	1300.00
L-17	Jones	Downtown	1000.00
L-17	Williams	Downtown	1000.00
L-20	McBride	North Town	7500.00
L-21	Smith	Central	570.00
L-23	Smith	Redwood	2000.00
L-93	Curry	Mianus	500.00
t-—mm - e e e +-—mm - +-—m— - +

Could also use inner join, USING

(loan number)

Natural Quter Joins

Can also specify natural outer joins

NATURAL specifies how the rows/columns are matched

All overlapping columns are used for join operation

Unmatched tuples from (left, right, or both) tables are
NULL-padded and included in result

Example:

SELECT * FROM customer
NATURAL LEFT OUTER JOIN borrower;

SELECT * FROM customer
NATURAL LEFT JOIN borrower;

Outer Joins and Aggregates

Outer joins can generate NULL values

Aggregate functions ignore NULL values
COUNT has most useful behavior!

Example:
Find out how many loans each customer has
Include customers with no loans; show O for those customers
Need to use customer and borrower tables

Need to use an outer join to include customers with no loans

Outer Joins and Aggregates (2)

First step: left outer join customer and borrower
tables

SELECT customer name, loan number
FROM customer LEFT OUTER JOIN borrower
USING (customer name) ;

Generates result:

T Fmmmm e +

Customers with no loans _L customer name _:_ loan number l
have NULL for loan_number | adams | L-16 |
. | Brooks | NULL |
attribute | Curry | L-93 |
| Glenn | NULL |

| Green | NULL |

| Hayes | L-15 |

| |

tommmm - tommmmm - +

Outer Joins and Aggregates (3)

Finally, need to count number of accounts for each
customer
Use grouping and aggregation for this

Grouping, aggregation is applied to results of FROM clause;
won'’t interfere with join operation

What'’s the difference between COUNT (*) and
COUNT (loan number) ?

COUNT (*) simply counts number of tuples in each group
COUNT (*) won’t produce any counts of O!
COUNT (loan number) is what we want

Outer Joins and Aggregates (4)

Final query:

SELECT customer name,
COUNT (loan number) AS num loans
FROM customer LEFT OUTER JOIN borrower
USING (customer name)
GROUP BY customer_néﬁé
ORDER BY COUNT (loan number) DESC;

Sort by count, just to make ,_______________ P +
it easier to analyze | customer name | n

I

I

| Curry

| McBride
| Hayes

| Jackson
| Williams
| Adams

| Brooks

| Lindsay
| ...

OCORKRKHERKEKHRLEW

Views

So far, have used SQL at logical level
Queries generally use actual relations
...but they don’t need to!

Can also write queries against derived relations
Nested subqueries or JOINs in FROM clause

SQL also provides view-level operations

Can define views of the logical model

Can write queries directly against views

Why Views?

Two main reasons for using views

Reason 1: Performance and convenience
Define a view for a widely used derived relation
Write simple queries against the view

DBMS automatically computes view’s contents when it is used
in a query

Some databases provide materialized views
View’s result is pre-computed and stored on disk

DBMS ensures that view is “up to date”

Might update view’s contents immediately, or periodically

Why Views? (2)

Reason 2: Security!
Can specify access constraints on both tables and views

Can specify strict access constraints on a table with sensitive
information

Can provide a view that excludes sensitive information, with
more lenient access

Example: employee information database

Logical-level tables might have SSN, salary info, other
private information

An “employee directory” view could limit this down to
employee name and professional contact information

Creating a View

SQL syntax for creating a view is very simple

Based on SELECT syntax, as always

CREATE VIEW viewname AS select stmt;

View’s columns are columns in SELECT statement

Column names must be unique, just like any table’s columns

Can specify view columns in CREATE VIEW syntax:

CREATE VIEW viewname (attrl, attr2, ...) AS
select stmt;

Even easier to remove:
DROP VIEW viewname;

Example View

Create a view that shows total account balance of each
customer.

The SELECT statement would be:
SELECT customer name,
SUM (balance) AS total balance
FROM depositor NATURAL JOIN account
GROUP BY customer name;
The view is just as simple:
CREATE VIEW customer deposits AS
SELECT customer name,
SUM (balance) AS total balance
FROM depositor NATURAL JOIN account
GROUP BY customer name;

With views, good attribute names are a must.

Updating a View?

A view is a derived relation...

What to do if an INSERT or UPDATE refers to a
view?e

One simple solution: Don’t allow itl ©

Could also allow the database designer to specify
what operations to perform when a modification is
attempted against a view

Very flexible approach

Default is still to forbid updates to views

Updatable Views

Can actually define updates for certain kinds of
views

A view is updatable if:
The FFROM clause only uses one relation

The SELECT clause only uses attributes in the relation, and
doesn’t perform any computations

Attributes not listed in the SELECT clause can be set to
NULL

The view’s query doesn’t perform any grouping or
aggregation

In these cases, INSERTs, UPDATEs, and DELETEs
can be performed

Updatable Views (2)

Example view:

All accounts at Downtown branch.

CREATE VIEW downtown_accounts AS
SELECT account number, branch name, balance
FROM account WHERE branch_name='Downtown';

Is this view updatable?
F'ROM uses only one relation
SELECT includes all attributes from the relation

No computations, aggregates, distinct values, etc.

Yes, it is updatable!

Updatable Views?

Issue a query against the view:
SELECT * FROM downtown accounts;

domm - $-—mm - 4o +
| account number | branch name | balance |
- - +-—————- = $-—m - +
| A-101 | Downtown | 500.00 |
e e L e e - - - +

Insert a new tuple:
INSERT INTO downtown_accounts
VALUES ('A-600', 'Mianus', 550);
Look at the view again:
SELECT * FROM downtown accounts;

domm - $-—m - 4o +
| account number | branch name | balance |
- - +-—————- = $-—m - +
| A-101 | Downtown | 500.00 |
e e L e e - - - +

Where’s my tuple?!

Checking Inserted Rows

Can add WITH CHECK OPTION to the view
declaration
Inserted rows are checked against the view’s WHERE clause

If a row doesn’t satisfy the WHERE clause, it is rejected

Updated view definition:
CREATE VIEW downtown accounts AS
SELECT account number, branch name, balance
FROM account WHERE branch name='Downtown'
WITH CHECK OPTION;

