
SUBQUERIES AND VIEWS
CS121: Relational Databases
Fall 2018 – Lecture 6

String Comparisons and GROUP BY

¨ Last time, introduced many advanced features of
SQL, including GROUP BY

¨ Recall: string comparisons using = are
case-insensitive by default
SELECT 'HELLO' = 'hello'; -- Evaluates to true

¨ This can also cause unexpected results with SQL
grouping and aggregation

¨ Example: table of people’s favorite colors
¤ CREATE TABLE favorite_colors (

name VARCHAR(30) PRIMARY KEY,
color VARCHAR(30)

);

2

String Compares and GROUP BY (2)

¨ Add data to our table:
INSERT INTO favorite_colors VALUES ('Alice', 'BLUE');
INSERT INTO favorite_colors VALUES ('Bob', 'Red');

INSERT INTO favorite_colors VALUES ('Clara', 'blue');

…

¨ How many people like each color?
¤ SELECT color, COUNT(*) num_people
FROM favorite_colors GROUP BY color;

¤ Even though “BLUE” and “blue” differ in case, they will
still end up in the same group!

3

Null Values in SQL

¨ Like relational algebra, SQL represents missing
information with null values
¤ NULL is a keyword in SQL
¤ Typically written in all-caps

¨ Use IS NULL and IS NOT NULL to check for null
values
¤ attr = NULL is never true! (It is unknown.)
¤ attr <> NULL is also never true! (Also unknown.)
¤ Instead, write: attr IS NULL

¨ Aggregate operations ignore NULL input values
¤ COUNT returns 0 for an empty input multiset
¤ All others return NULL for an empty input (even SUM !)

4

Comparisons and Unknowns

¨ Relational algebra introduced the unknown truth-
value
¤ Produced by comparisons with null

¨ SQL also has tests for unknown values
comp IS UNKNOWN
comp IS NOT UNKNOWN

¤ comp is some comparison operation

5

NULL in Inserts and Updates

¨ Can specify NULL values in INSERT and UPDATE
statements

INSERT INTO account
VALUES ('A-315', NULL, 500);

¤ Can clearly lead to some problems…
¤ Primary key attributes are not allowed to have NULL

values
¤ Other ways to specify constraints on NULL values for

specific attributes

6

Additional Join Operations

¨ SQL-92 introduces additional join operations
¤ natural joins
¤ left/right/full outer joins
¤ theta joins

¨ Syntax varies from the basic “Cartesian product”
join syntax
¤ All changes are in FROM clause
¤ Varying levels of syntactic sugar…

7

Theta Join

¨ One relational algebra operation we skipped
¨ Theta join is a generalized join operation

¤ Sometimes called a “condition join”

¨ Written as: r q s
¨ Abbreviation for: sq(r ´ s)
¨ Doesn’t include project operation like natural join and

outer joins do
¨ No null-padded results, like outer joins have

8

SQL Theta Joins

¨ SQL provides a syntax for theta joins
¨ Example:

Associate customers and loan balances
SELECT * FROM borrower INNER JOIN loan ON
borrower.loan_number = loan.loan_number;

¤ Result:
+---------------+-------------+-------------+-------------+---------+
| customer_name | loan_number | loan_number | branch_name | amount |
+---------------+-------------+-------------+-------------+---------+
Smith	L-11	L-11	Round Hill	900.00
Jackson	L-14	L-14	Downtown	1500.00
Hayes	L-15	L-15	Perryridge	1500.00
Adams	L-16	L-16	Perryridge	1300.00
Jones	L-17	L-17	Downtown	1000.00
... 				
+---------------+-------------+-------------+-------------+---------+

9

SQL Theta Joins (2)

¨ Syntax in FROM clause:
table1 INNER JOIN table2 ON condition
¤ INNER is optional; just distinguishes from outer joins

¨ No duplicate attribute names are removed
¤ Can specify relation name, attribute names
table1 INNER JOIN table2 ON condition
AS rel (attr1, attr2, ...)

¨ Very similar to a derived relation

10

Theta Joins on Multiple Tables

¨ Can join across multiple tables with this syntax
¨ Example: join customer, borrower, loan tables

¤ Nested theta-joins:
SELECT * FROM customer AS c
JOIN borrower AS b ON

c.customer_name = b.customer_name
JOIN loan AS l ON

b.loan_number = l.loan_number;

¤ Generally evaluated left to right
¤ Can use parentheses to specify join order
¤ Order usually doesn’t affect results or performance

(if outer joins are involved, results can definitely change)

11

Theta Joins on Multiple Tables (2)

Join customer, borrower, loan tables: take 2
¤ One Cartesian product and one theta join:
SELECT * FROM customer AS c
JOIN borrower AS b JOIN loan AS l
ON c.customer_name = b.customer_name

AND b.loan_number = l.loan_number;

¤ Database will optimize this anyway, but it really isn’t
two theta joins

12

Join Conditions

¨ Can specify any condition (including nested
subqueries) in ON clause
¤ Even conditions that aren’t related to join itself

¨ Guideline:
¤ Use ON clause for join conditions
¤ Use WHERE clause for selecting rows
¤ Mixing the two can cause lots of confusion!

13

Cartesian Products

¨ Cartesian product can be specified as CROSS JOIN
¤ Can’t specify an ON condition for a CROSS JOIN

¨ Cartesian product of borrower and loan:
SELECT * FROM borrower CROSS JOIN loan;

¤ Same as a theta join with no condition:
SELECT * FROM borrower INNER JOIN loan
ON TRUE;

¤ Or, simply:
SELECT * FROM borrower JOIN loan;
SELECT * FROM borrower, loan;

14

Outer Joins

¨ Can specify outer joins in SQL as well:
SELECT * FROM table1
LEFT OUTER JOIN table2 ON condition;

SELECT * FROM table1
RIGHT OUTER JOIN table2 ON condition;

SELECT * FROM table1
FULL OUTER JOIN table2 ON condition;

¤ OUTER is implied by LEFT/RIGHT/FULL, and can
therefore be left out
SELECT * FROM table1 LEFT JOIN table2 ON
condition;

15

Common Attributes

¨ ON syntax is clumsy for simple joins
¤ Also, it’s tempting to include conditions that should be in the
WHERE clause

¨ Often, schemas are designed such that join columns
have the same names
¤ e.g. borrower.loan_number and loan.loan_number

¨ USING clause is a simplified form of ON
SELECT * FROM t1 LEFT OUTER JOIN t2
USING (a1, a2, ...);

¤ Roughly equivalent to:
SELECT * FROM t1 LEFT OUTER JOIN t2
ON (t1.a1 = t2.a1 AND t1.a2 = t2.a2 AND ...);

16

Common Attributes (2)

¨ USING also eliminates duplicate join attributes
¤ Result of join with USING (a1, a2, ...) will only

have one instance of each join column in the result
¤ This is fine, because USING requires equal values for

the specified attributes
¨ Example: tables r(a, b, c) and s(a, b, d)

¤ SELECT * FROM r JOIN s USING (a)
¤ Result schema is: (a, r.b, r.c, s.b, s.d)

¨ Can use USING clause with INNER / OUTER joins
¤ No condition allowed for CROSS JOIN

17

Natural Joins

¨ SQL natural join operation:
SELECT * FROM t1 NATURAL INNER JOIN t2;

¤ INNER is optional, as usual
¤ No ON or USING clause is specified

¨ All common attributes are used in natural join
operation
¤ To join on a subset of common attributes, use a regular
INNER JOIN, with a USING clause

18

Natural Join Example

Join borrower and loan relations:
SELECT * FROM borrower NATURAL JOIN loan;

¨ Result:

¤ Could also use inner join, USING (loan_number)

+-------------+---------------+-------------+---------+
| loan_number | customer_name | branch_name | amount |
+-------------+---------------+-------------+---------+
L-11	Smith	Round Hill	900.00
L-14	Jackson	Downtown	1500.00
L-15	Hayes	Perryridge	1500.00
L-16	Adams	Perryridge	1300.00
L-17	Jones	Downtown	1000.00
L-17	Williams	Downtown	1000.00
L-20	McBride	North Town	7500.00
L-21	Smith	Central	570.00
L-23	Smith	Redwood	2000.00
L-93	Curry	Mianus	500.00
+-------------+---------------+-------------+---------+

19

Natural Outer Joins

¨ Can also specify natural outer joins
¤ NATURAL specifies how the rows/columns are matched

¤ All overlapping columns are used for join operation
¤ Unmatched tuples from (left, right, or both) tables are
NULL-padded and included in result

¨ Example:
SELECT * FROM customer
NATURAL LEFT OUTER JOIN borrower;

SELECT * FROM customer
NATURAL LEFT JOIN borrower;

20

Outer Joins and Aggregates

¨ Outer joins can generate NULL values
¨ Aggregate functions ignore NULL values

¤ COUNT has most useful behavior!

¨ Example:
¤ Find out how many loans each customer has
¤ Include customers with no loans; show 0 for those customers
¤ Need to use customer and borrower tables
¤ Need to use an outer join to include customers with no loans

21

Outer Joins and Aggregates (2)

¨ First step: left outer join customer and borrower
tables

SELECT customer_name, loan_number
FROM customer LEFT OUTER JOIN borrower

USING (customer_name);

¨ Generates result:
¤ Customers with no loans

have NULL for loan_number
attribute

+---------------+-------------+
| customer_name | loan_number |
+---------------+-------------+
Adams	L-16
Brooks	NULL
Curry	L-93
Glenn	NULL
Green	NULL
Hayes	L-15
...	
+---------------+-------------+

22

Outer Joins and Aggregates (3)

¨ Finally, need to count number of accounts for each
customer
¤ Use grouping and aggregation for this
¤ Grouping, aggregation is applied to results of FROM clause;

won’t interfere with join operation

¨ What’s the difference between COUNT(*) and
COUNT(loan_number) ?
¤ COUNT(*) simply counts number of tuples in each group
¤ COUNT(*) won’t produce any counts of 0!
¤ COUNT(loan_number) is what we want

23

Outer Joins and Aggregates (4)

¨ Final query:
SELECT customer_name,

COUNT(loan_number) AS num_loans
FROM customer LEFT OUTER JOIN borrower

USING (customer_name)
GROUP BY customer_name
ORDER BY COUNT(loan_number) DESC;

¤ Sort by count, just to make
it easier to analyze

+---------------+-----------+
| customer_name | num_loans |
+---------------+-----------+
Smith	3
Jones	1
Curry	1
McBride	1
Hayes	1
Jackson	1
Williams	1
Adams	1
Brooks	0
Lindsay	0
...	

24

Views

¨ So far, have used SQL at logical level
¤ Queries generally use actual relations
¤ …but they don’t need to!
¤ Can also write queries against derived relations

n Nested subqueries or JOINs in FROM clause

¨ SQL also provides view-level operations
¨ Can define views of the logical model

¤ Can write queries directly against views

25

Why Views?

¨ Two main reasons for using views
¨ Reason 1: Performance and convenience

¤ Define a view for a widely used derived relation
¤ Write simple queries against the view
¤ DBMS automatically computes view’s contents when it is used

in a query

¨ Some databases provide materialized views
¤ View’s result is pre-computed and stored on disk
¤ DBMS ensures that view is “up to date”

n Might update view’s contents immediately, or periodically

26

Why Views? (2)

¨ Reason 2: Security!
¤ Can specify access constraints on both tables and views
¤ Can specify strict access constraints on a table with sensitive

information
¤ Can provide a view that excludes sensitive information, with

more lenient access
¨ Example: employee information database

¤ Logical-level tables might have SSN, salary info, other
private information

¤ An “employee directory” view could limit this down to
employee name and professional contact information

27

Creating a View

¨ SQL syntax for creating a view is very simple
¤ Based on SELECT syntax, as always

CREATE VIEW viewname AS select_stmt;
¤ View’s columns are columns in SELECT statement
¤ Column names must be unique, just like any table’s columns
¤ Can specify view columns in CREATE VIEW syntax:

CREATE VIEW viewname (attr1, attr2, ...) AS
select_stmt;

¨ Even easier to remove:
DROP VIEW viewname;

28

Example View

¨ Create a view that shows total account balance of each
customer.
¤ The SELECT statement would be:

SELECT customer_name,
SUM(balance) AS total_balance

FROM depositor NATURAL JOIN account
GROUP BY customer_name;

¤ The view is just as simple:
CREATE VIEW customer_deposits AS
SELECT customer_name,

SUM(balance) AS total_balance
FROM depositor NATURAL JOIN account
GROUP BY customer_name;

¨ With views, good attribute names are a must.

29

Updating a View?

¨ A view is a derived relation…
¨ What to do if an INSERT or UPDATE refers to a

view?
¨ One simple solution: Don’t allow it! J
¨ Could also allow the database designer to specify

what operations to perform when a modification is
attempted against a view
¤ Very flexible approach
¤ Default is still to forbid updates to views

30

Updatable Views

¨ Can actually define updates for certain kinds of
views

¨ A view is updatable if:
¤ The FROM clause only uses one relation
¤ The SELECT clause only uses attributes in the relation, and

doesn’t perform any computations
¤ Attributes not listed in the SELECT clause can be set to
NULL

¤ The view’s query doesn’t perform any grouping or
aggregation

¨ In these cases, INSERTs, UPDATEs, and DELETEs
can be performed

31

Updatable Views (2)

¨ Example view:
¤ All accounts at Downtown branch.

CREATE VIEW downtown_accounts AS
SELECT account_number, branch_name, balance
FROM account WHERE branch_name='Downtown';

¨ Is this view updatable?
¤ FROM uses only one relation
¤ SELECT includes all attributes from the relation

¤ No computations, aggregates, distinct values, etc.
¤ Yes, it is updatable!

32

Updatable Views?

¨ Issue a query against the view:
SELECT * FROM downtown_accounts;

¨ Insert a new tuple:
INSERT INTO downtown_accounts
VALUES ('A-600', 'Mianus', 550);

¨ Look at the view again:
SELECT * FROM downtown_accounts;

¤ Where’s my tuple?!

+----------------+-------------+---------+
| account_number | branch_name | balance |
+----------------+-------------+---------+
| A-101 | Downtown | 500.00 |
+----------------+-------------+---------+

+----------------+-------------+---------+
| account_number | branch_name | balance |
+----------------+-------------+---------+
| A-101 | Downtown | 500.00 |
+----------------+-------------+---------+

33

Checking Inserted Rows

¨ Can add WITH CHECK OPTION to the view
declaration
¤ Inserted rows are checked against the view’s WHERE clause
¤ If a row doesn’t satisfy the WHERE clause, it is rejected

¨ Updated view definition:
CREATE VIEW downtown_accounts AS
SELECT account_number, branch_name, balance
FROM account WHERE branch_name='Downtown'

WITH CHECK OPTION;

34

