SQL OVERVIEW

SQL

SQL = Structured Query Language

Original language was “SEQUEL”
IBM’s System R project (early 1970’s)
“Structured English Query Language”

Caught on very rapidly
Simple, declarative language for writing queries
Also includes many other features

Standardized by ANSI/ISO

SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003,
SQL:2008, SQL:2011

Most implementations loosely follow the standards (plenty of
portability issues)

SQL Features

Data Definition Language (DDL)
Specify relation schemas (attributes, domains)
Specify a variety of integrity constraints
Access constraints on data
Indexes and other storage “hints” for performance

Data Manipulation Language (DML)
Generally based on relational algebra
Supports querying, inserting, updating, deleting data
Very sophisticated features for multi-table queries
Other useful tools
Defining views, transactions, etc.

SQL Basics

SQL language is case-insensitive

both keywords and identifiers (for the most part)
SQL statements end with a semicolon

SQL comments have two forms:

Single-line comments start with two dashes

—-— This is a SQL comment.

Block comments follow C style
/%
* This is a block comment in SQL.

*/

SQL Databases

SQL relations are contained within a database
Each application usually works against its own database

Several applications may share the same database, too

An example from MySQL:
CREATE DATABASE bank;
USE bank;

Creates a new, empty database called bank
USE statement makes bank the “default” database for the
current connection

DDL and DML operations will be evaluated in the context of
the connection’s default database

Creating a SQL Table

In SQL, relations are called “tables”

Not exactly like relational model “relations” anyway

Syntax:

CREATE TABLE t (
attrl domainl,
attr2 domain2,

4

attrN domainN
) ;
t is name of relation (table)
attrl, ... are names of attributes (columns)

domainl, ... are domains (types) of attributes

SQL Names

Tables, columns, etc. require names

Rules on valid names can vary dramatically across
implementations

Good, portable rules:
First character should be alphabetical

Remaining characters should be alphanumeric or
underscore “_’

Use the same case in DML that you use in DDL

SQL Attribute Domains

Some standard SQL domain types:
CHAR (N)
A character field, fixed at N characters wide
Short for CHARACTER (N)
VARCHAR (N)
A variable-width character field, with maximum length N
Short for CHARACTER VARYING (N)

INT
A signed integer field (typically 32 bits)
Short for INTEGER
Also TINYINT (8 bits), SMALLINT (16 bits), BIGINT (64 bits), etc.

Also unsigned variants
Non-standard, only supported by some vendors

CHAR vs. VARCHAR

Both CHAR and VARCHAR have a size limit
CHAR is a fixed-length character field

Can store shorter strings, but storage layer pads out the
value to the full size

VARCHAR is a variable-length character field
Storage layer doesn’t pad out shorter strings

String’s length must also be stored for each value

Use CHAR when all values are approximately
(or exactly) the same length

Use VARCHAR when values can vary widely in
lengths

SQL Attribute Domains (2)

More standard SQL domain types:
NUMERIC (P, D)
A fixed-point number with user-specified precision

P total digits; D digits to right of decimal place

Can exactly store numbers

DOUBLE PRECISION

A double-precision floating-point value

An approximation! Don’t use for money! ©
9] Y

REAL is sometimes a synonym
FLOAT (N)

A floating-point value with at least N bits of precision

SQL Attribute Domains (3)

Other useful attribute domains, too:
DATE, TIME, TTIMESTAMP

For storing temporal data
Large binary /text data fields

BLOB, CLOB, TEXT

Binary Large Obijects, Character Large Obijects
Large text fields
CHAR, VARCHAR tend to be very limited in size

Other specialized types
Enumerations, geometric or spatial data types, etc.

User-defined data types

Choosing the Right Type

Need to think carefully about what type makes most sense
for your data values

Example: storing ZIP codes

US postal codes for mail routing
5 digits, e.g. 21125 for Caltech

Does INTEGER make sense?
Problem 1: Some ZIP codes have leading zeroes!

Many east-coast ZIP codes start with O.
Numeric types won’t include leading zeros.

Problem 2: US mail also uses ZIP+4 expanded ZIP codes
e.g. 21125-8000

Problem 3: Many foreign countries use non-numeric values

Choosing the Right Type (2)

Better choice for ZIP codes?
A CHAR or VARCHAR column makes much more sense

For example:

CHAR (5) or CHAR (9) for US-only postal codes
VARCHAR (20) for US + international postal codes

Another example: monetary amounts

Floating-point representations cannot exactly represent
all values

e.g. 0.1 is an infinitely-repeating binary decimal value

Use NUMERIC to represent monetary values

Example SQL Schema

Creating the account relation:
CREATE TABLE account (

acct id CHAR(10),
branch name CHAR(20),
balance NUMERIC (12, 2)

) ;
Account IDs can’t be more than 10 chars
Branch names can’t be more than 20 chars

Balances can have 10 digits left of decimal, 2 digits right of
decimal

Fixed-point, exact precision representation of balances

Inserting Rows

Tables are initially empty

Use INSERT statement to add rows

INSERT INTO account
VALUES ('A-301', 'New York', 350);

INSERT INTO account
VALUES ('A-307', 'Seattle',K 275);

String values are single-quoted

(In SQL, double-quoted strings refer to column names)

Values appear in same order as table’s attributes

Inserting Rows (2)

Can specify which attributes in INSERT

INSERT INTO account (acct id, branch name, balance)
VALUES ('A-301', 'New York', 350);

Can list attributes in a different order

Can exclude attributes that have a default value

Problem: We can add multiple accounts with same

account |IDI

INSERT INTO account
VALUES ('A-350', 'Seattle', 800);

INSERT INTO account
VALUES ('A-350', 'Los Angeles',6 195);

Primary Key Constraints

The CREATE TABLE syntax also allows integrity
constraints to be specified
Are often specified after all attributes are listed

Primary key constraint:
CREATE TABLE account (

acct id CHAR(10),
branch name CHAR(20),
balance NUMERIC (12, 2),

PRIMARY KEY (acct id)
) ;

Database won’t allow two rows with same account ID

Primary Key Constraints (2)

A primary key can have multiple attributes
CREATE TABLE depositor (
customer name VARCHAR(30),
acct id CHAR(10),
PRIMARY KEY (customer name, acct id)
) ;
Necessary because SQL tables are multisets
A table cannot have multiple primary keys
(obvious)

Many other kinds of constraints too

Will cover in future lectures!

Removing Rows, Tables, etc.

Can delete rows with DELETE command
Delete bank account with ID A-307:
DELETE FROM account WHERE acct_id = 'A-307"';

Delete all bank accounts:
DELETE FROM account;
Can drop tables and databases:

Remove account table:
DROP TABLE account;

Remove an entire database, including all tables!
DROP DATABASE bank;

Issuing SQL Queries

SQL queries use the SELECT statement
Very central part of SQL language

Concepts appear in all DML commands

General form is:

SELECT A,, A4,,
FROM r,, r,,
WHERE P;

r. are the relations (tables)
A. are attributes (columns)

P is the selection predicate

SELECT Operations

SELECT A,, A,,

Corresponds to a relational algebra project operation

HA“AQ,...(vee)
Some books call o “restrict” because of this name

mismatch
FROM r,, r,,

Corresponds to Cartesian product of relations ry, ry, ...

r‘l Xr2><ooo

SELECT Operations (2)

WHERE P

Corresponds to a selection operation

Gp(...)

Can be omitted. When left off, P = true
Assembling it all:

SELECT A,, A,, ... FROM r,, r,,
WHERE P;

Equivalent to: 11, . . (Cp(ry X ry x ...))

SQL and Duplicates

Biggest difference between relational algebra and
SQL is use of multisets
In SQL, relations are multisets of tuples, not sets

Biggest reason is practical:
Removing duplicate tuples is time consuming!

Must revise definitions of relational algebra
operations to handle duplicates

Mainly affects set-operations: U, N, —
(Book explores this topic in depth)

SQL provides ways to remove duplicates for all
operations

Example Queries

“Find all branches with at least one bank account.”

SELECT branch_name
FROM account;
Equivalent to typing:

SELECT ALL branch_name
FROM account;

To eliminate duplicates:

SELECT DISTINCT branch_name
FROM account;

New York
Seattle

Los Angeles
New York
Los Angeles

New York
Seattle
Los Angeles

Selecting Specific Attributes

Can specify one or more attributes to appear in
result

) =H - 4 +
Find ID and balance of | “acct id | balance |
CI” bank accounts. T-i-gai---'r--gga-aa-':'
SELECT acct id, balance | A-307 | 275.00 |
s . | A-318 | 550.00 |
FROM account; | A-310 | 80.00 |
| A-322 | 275.00 |
- e et +
Can also specify * to mean “all attributes”
SELECT * FROM account;
Returns all details of fommmmmmmm P fommmmmmmm +
| acct id | branch name | balance |
all accounts. | acet —td | branch _name | batance H
| A-301 | New York | 350.00 |
| A-307 | Seattle | 275.00 |
| A-318 | Los Angeles | 550.00 |
| A-319 | New York | 80.00 |
| A-322 | Los Angeles | 275.00 |
$-—— - - - e +

Computing Results

The SELECT clause is a generalized projection
operation

Can compute results based on attributes

SELECT cred id, credit limit - balance
FROM credit account;

Computed values don’t have a (standardized) name!

Many DBMSes name the 2" column “credit limit - balance”

Can also name (or rename) values

SELECT cred id,
credit limit - balance AS available credit
FROM credit account;

WHERE Clause

The WHERE clause specifies a selection predicate

Can use comparison operators:
=, <> equals, not-equals (= also usually supported)
<, <= less than, less or equal

>, >= greater than, greater or equal

Can refer to any attribute in FROM clause

Can include arithmetic expressions in comparisons

WHERE Examples

“Find IDs and balances of all accounts in the Los
Angeles branch.”

SELECT acct 1id, balance FROM account
WHERE branch name = 'Los Angeles';

+

| A-318 | 550.00 |
| 275.00 |
+

“Retrieve all details of bank accounts with a balance

less than $300.” e e e ,
SELECT * FROM account | 2°cttd¢ | branch name | balance |
. | A-307 | Seattle | 275.00 |

WHERE balance < 300; T VO ki I

| A-322 | Los Angeles | 275.00 |

- d-—mm - +-————— - +

Larger Predicates

Can use AND, OR, NOT in WHERE clause

SELECT acct 1id, balance FROM account
WHERE branch name = 'Los Angeles' AND
balance < 300;

SELECT * FROM account
WHERE balance >= 250 AND balance <= 400;

SQL also has BETWEEN and NOT BETWEEN syntax

SELECT * FROM account
WHERE balance BETWEEN 250 AND 400;

Note that BETWEEN includes interval endpoints!

String Comparisons

String values can be compared
Lexicographic comparisons

Often, the default is to ignore case!
SELECT 'HELLO' = 'hello'; -- Evaluates to true

Can also do pattern matching with LIKE expression
string attr LIKE pattern

pattern is a string literal enclosed in single-quotes
% (percent) matches a substring
__(underscore) matches a single character
Can escape % or __ with a backslash \
LIKE does case-sensitive comparisons

String-Matching Example

“Find all accounts at branches with ‘le’ somewhere in
the name.”
Why? | don’t know...

SELECT * FROM account
WHERE branch_name LIKE '%le%';

t-—m - e t-—m - +
| acct _id | branch name | balance |
+-—m - t-mm =T t-—m - +
A-307	Seattle	275.00
A-318	Los Angeles	550.00
A-322	Los Angeles	275.00
+-—m - tmm - e +

String Operations

Regular-expression matching is also part of the

SQL standard (SQL:1999)
string attr MATCHES regexp

String-matching operations tend to be expensive
Especially patterns with a leading wildcard, e.g. ' $abc'

Try to avoid heavy reliance on pattern-matching

If string searching is required, try to pre-digest text
and generate search indexes

Some databases provide “full-text search” capabilities, but
such features are vendor-specific!

FROM Clause

Can specify one or more tables in FROM clause

If multiple tables:

Select /project against Cartesian product of relations
-—- Produces a row for every combination
-- of input tuples.

SELECT * FROM borrower, loan;

$-—mmm - +-————— - +-————— - Fom - +
| cust name | loan_id | loan_id | branch name |
+-———- ——— +-———= ——— - B s S +
Anderson	L-437	L-419	Seattle
Jackson	L-419	L-419	Seattle
Lewis	L-421	L-419	Seattle
Smith	L-445	L-419	Seattle
Anderson	L-437	L-421	San Francisco
Jackson	L-419	L-421	San Francisco
Lewis	L-421	L-421	San Francisco
I

FROM Clause (2)

If tables have overlapping attributes, use
tbl name.attr namefodwmmwwh

SELECT * FROM borrower, loan
WHERE borrower. 1oan_:|.d = loan.loan_id;

4 $-—— - 4 - -
| cust name | loan_id | loan_id | branch name
4 $-—— - +-—— - - -
| Jackson | L-419 | L-419 | Seattle

| Lewis | L-421 | L-421 | San Francisco
| Anderson | L-437 | L-437 | Las Vegas

| Smith | L-445 | L-445 | Los Angeles
4 $-—— - $-—— - - -

All columns can be referred to by
tbl name.attr name

This kind of query is called an equijoin

2900.00 |
7500.00 |
4300.00 |
2000.00 |

Databases optimize equijoin queries very effectively.

SQL and Joins

SQL provides several different options for
performing joins across multiple tables

This form is the most basic usage

Woas in earliest versions of SQL
Doesn’t provide natural joins

Can’t do outer joins either

Will cover other forms of SQL join syntax soon...

Renaming Tables

Can specify alternate names in FROM clause too

Write: table AS name
(The AS is optional, but it’s clearer to leave it in.)

Previous example:
“Find the loan with the largest amount.”

Started by finding loans that have an amount smaller than
some other loan’s amount

Used Cartesian product and rename operation

t-———— - +

SELECT DISTINCT loan.loan id | loan id |
FROM loan, loan AS test HEPY I
WHERE loan.amount < test.amount; } ot }

Renaming Tables (2)

When a table is renamed in FROM clause, can use
the new name in both SELECT and WHERE clauses

Useful for long table names! ©

SELECT c.cust name, l.amount
FROM customer AS ¢, borrower AS Db,
loan AS 1
WHERE c.cust name = b.cust name AND
b.loan id = 1l.loan id;

Set Operations

SQL also provides set operations, like relational
algebra

Operations take two queries and produce an output
relation

Set-union:
select; UNION select, ;

Set-intersection:
select; INTERSECT select, ;

Set-difference:
select,; EXCEPT select, ;

Note: select; are complete SELECT statements!

Set-Operation Examples

Find customers with an account or a loan:
SELECT cust name FROM depositor UNION
SELECT cust name FROM borrower;

Database automatically eliminates duplicates

Find customers with an account but not a loan:
SELECT cust name FROM depositor EXCEPT
SELECT cust name FROM borrower;

Can also put parentheses around SELECT clauses for
readability

(SELECT cust name FROM depositor)
EXCEPT
(SELECT cust name FROM borrower) ;

Set Operations and Duplicates

By default, SQL set-operations eliminate duplicate

tuples
Opposite to default behavior of SELECT!

Can keep duplicate tuples by appending ALL to

set operation:
select; UNION ALL select, ;

select; INTERSECT ALL select, ;
select; EXCEPT ALL select, ;

How Many Duplicates?

Need to define behavior of “set operations” on
multisets

Given two multiset relations r; and r,

r, and r, have same schema

Some tuple t appears ¢, times in ry, and c, times in r,
1 Yau L2

contains ¢; + ¢, copies of ¢
T Maun X2

contains min(c,, ¢,) copies of t

L1 —au L2
contains max(c; — ¢,, 0) copies of t

Other Relational Operations

Can actually update definitions of all relational
operations to support multisets

Necessary for using relational algebra to model
execution plans

Not terribly interesting though... ©

If you're curious, see book for details

SQL Style Guidelines

Follow good coding style in SQL!

Some recommendations:
Use lowercase names for tables, columns, etc.
Put a descriptive comment above every table
Write all SQL keywords in uppercase

Follow standard indentation scheme

e.g. indent columns in table declarations by 2-4 spaces

Keep lines to 80 characters or less!

wrap lines in reasonable places

Note: You will lose points for sloppy SQL.

Next Time

Sorting results
Grouping and aggregate functions
Nested queries and many more set operations

How to update SQL databases

