
SQL OVERVIEW
CS121: Relational Databases
Fall 2018 – Lecture 4

SQL

¨ SQL = Structured Query Language
¨ Original language was “SEQUEL”

¤ IBM’s System R project (early 1970’s)
¤ “Structured English Query Language”

¨ Caught on very rapidly
¤ Simple, declarative language for writing queries
¤ Also includes many other features

¨ Standardized by ANSI/ISO
¤ SQL-86, SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2008, SQL:2011
¤ Most implementations loosely follow the standards (plenty of

portability issues)

2

SQL Features

¨ Data Definition Language (DDL)
¤ Specify relation schemas (attributes, domains)
¤ Specify a variety of integrity constraints
¤ Access constraints on data
¤ Indexes and other storage “hints” for performance

¨ Data Manipulation Language (DML)
¤ Generally based on relational algebra
¤ Supports querying, inserting, updating, deleting data
¤ Very sophisticated features for multi-table queries

¨ Other useful tools
¤ Defining views, transactions, etc.

3

SQL Basics

¨ SQL language is case-insensitive
¤ both keywords and identifiers (for the most part)

¨ SQL statements end with a semicolon
¨ SQL comments have two forms:

¤ Single-line comments start with two dashes
-- This is a SQL comment.

¤ Block comments follow C style
/*
* This is a block comment in SQL.
*/

4

SQL Databases

¨ SQL relations are contained within a database
¤ Each application usually works against its own database
¤ Several applications may share the same database, too

¨ An example from MySQL:
CREATE DATABASE bank;
USE bank;

¤ Creates a new, empty database called bank
¤ USE statement makes bank the “default” database for the

current connection
¤ DDL and DML operations will be evaluated in the context of

the connection’s default database

5

Creating a SQL Table

¨ In SQL, relations are called “tables”
¤ Not exactly like relational model “relations” anyway

¨ Syntax:
CREATE TABLE t (

attr1 domain1,
attr2 domain2,
... ,
attrN domainN

);
¤ t is name of relation (table)
¤ attr1, … are names of attributes (columns)
¤ domain1, … are domains (types) of attributes

6

SQL Names

¨ Tables, columns, etc. require names
¨ Rules on valid names can vary dramatically across

implementations

¨ Good, portable rules:
¤ First character should be alphabetical
¤ Remaining characters should be alphanumeric or

underscore ‘_’
¤ Use the same case in DML that you use in DDL

7

SQL Attribute Domains

¨ Some standard SQL domain types:
CHAR(N)

n A character field, fixed at N characters wide
n Short for CHARACTER(N)

VARCHAR(N)
n A variable-width character field, with maximum length N
n Short for CHARACTER VARYING(N)

INT
n A signed integer field (typically 32 bits)
n Short for INTEGER
n Also TINYINT (8 bits), SMALLINT (16 bits), BIGINT (64 bits), etc.
n Also unsigned variants

n Non-standard, only supported by some vendors

8

CHAR vs. VARCHAR

¨ Both CHAR and VARCHAR have a size limit
¨ CHAR is a fixed-length character field

¤ Can store shorter strings, but storage layer pads out the
value to the full size

¨ VARCHAR is a variable-length character field
¤ Storage layer doesn’t pad out shorter strings
¤ String’s length must also be stored for each value

¨ Use CHAR when all values are approximately
(or exactly) the same length

¨ Use VARCHAR when values can vary widely in
lengths

9

SQL Attribute Domains (2)

¨ More standard SQL domain types:
NUMERIC(P,D)

n A fixed-point number with user-specified precision
n P total digits; D digits to right of decimal place
n Can exactly store numbers

DOUBLE PRECISION
n A double-precision floating-point value
n An approximation! Don’t use for money! J
n REAL is sometimes a synonym

FLOAT(N)
n A floating-point value with at least N bits of precision

10

SQL Attribute Domains (3)

¨ Other useful attribute domains, too:
DATE, TIME, TIMESTAMP

n For storing temporal data

¨ Large binary/text data fields
BLOB, CLOB, TEXT

n Binary Large Objects, Character Large Objects
n Large text fields
n CHAR, VARCHAR tend to be very limited in size

¨ Other specialized types
¤ Enumerations, geometric or spatial data types, etc.
¤ User-defined data types

11

Choosing the Right Type

¨ Need to think carefully about what type makes most sense
for your data values

¨ Example: storing ZIP codes
¤ US postal codes for mail routing
¤ 5 digits, e.g. 91125 for Caltech

¨ Does INTEGER make sense?
¨ Problem 1: Some ZIP codes have leading zeroes!

¤ Many east-coast ZIP codes start with 0.
¤ Numeric types won’t include leading zeros.

¨ Problem 2: US mail also uses ZIP+4 expanded ZIP codes
¤ e.g. 91125-8000

¨ Problem 3: Many foreign countries use non-numeric values

12

Choosing the Right Type (2)

¨ Better choice for ZIP codes?
¤ A CHAR or VARCHAR column makes much more sense

¨ For example:
¤ CHAR(5) or CHAR(9) for US-only postal codes
¤ VARCHAR(20) for US + international postal codes

¨ Another example: monetary amounts
¤ Floating-point representations cannot exactly represent

all values
n e.g. 0.1 is an infinitely-repeating binary decimal value

¤ Use NUMERIC to represent monetary values

13

Example SQL Schema

¨ Creating the account relation:
CREATE TABLE account (

acct_id CHAR(10),
branch_name CHAR(20),
balance NUMERIC(12, 2)

);

¤ Account IDs can’t be more than 10 chars
¤ Branch names can’t be more than 20 chars
¤ Balances can have 10 digits left of decimal, 2 digits right of

decimal
n Fixed-point, exact precision representation of balances

14

Inserting Rows

¨ Tables are initially empty
¨ Use INSERT statement to add rows

INSERT INTO account
VALUES ('A-301', 'New York', 350);

INSERT INTO account
VALUES ('A-307', 'Seattle', 275);

...
¤ String values are single-quoted
¤ (In SQL, double-quoted strings refer to column names)
¤ Values appear in same order as table’s attributes

15

Inserting Rows (2)

¨ Can specify which attributes in INSERT
INSERT INTO account (acct_id, branch_name, balance)
VALUES ('A-301', 'New York', 350);

¤ Can list attributes in a different order
¤ Can exclude attributes that have a default value

¨ Problem: We can add multiple accounts with same
account ID!

INSERT INTO account
VALUES ('A-350', 'Seattle', 800);

INSERT INTO account
VALUES ('A-350', 'Los Angeles', 195);

16

Primary Key Constraints

¨ The CREATE TABLE syntax also allows integrity
constraints to be specified
¤ Are often specified after all attributes are listed

¨ Primary key constraint:
CREATE TABLE account (

acct_id CHAR(10),
branch_name CHAR(20),
balance NUMERIC(12, 2),

PRIMARY KEY (acct_id)
);

¤ Database won’t allow two rows with same account ID

17

Primary Key Constraints (2)

¨ A primary key can have multiple attributes
CREATE TABLE depositor (
customer_name VARCHAR(30),
acct_id CHAR(10),
PRIMARY KEY (customer_name, acct_id)

);

¤ Necessary because SQL tables are multisets

¨ A table cannot have multiple primary keys
¤ (obvious)

¨ Many other kinds of constraints too
¤ Will cover in future lectures!

18

Removing Rows, Tables, etc.

¨ Can delete rows with DELETE command
¤ Delete bank account with ID A-307:

DELETE FROM account WHERE acct_id = 'A-307';

¤ Delete all bank accounts:
DELETE FROM account;

¨ Can drop tables and databases:
¤ Remove account table:

DROP TABLE account;

¤ Remove an entire database, including all tables!
DROP DATABASE bank;

19

Issuing SQL Queries

¨ SQL queries use the SELECT statement

¨ Very central part of SQL language
¤ Concepts appear in all DML commands

¨ General form is:
SELECT A1, A2, ...
FROM r1, r2, ...
WHERE P;

¤ ri are the relations (tables)
¤ Ai are attributes (columns)
¤ P is the selection predicate

20

SELECT Operations

¨ SELECT A1, A2, ...
¤ Corresponds to a relational algebra project operation
P (…)

¤ Some books call s “restrict” because of this name
mismatch

¨ FROM r1, r2, ...
¤ Corresponds to Cartesian product of relations r1, r2, …
r1 ´ r2 ´ …

A1, A2, …

21

SELECT Operations (2)

¨ WHERE P
¤ Corresponds to a selection operation
sP(…)

¤ Can be omitted. When left off, P = true

¨ Assembling it all:
SELECT A1, A2, ... FROM r1, r2, ...
WHERE P;

¤ Equivalent to: P (sP(r1 ´ r2 ´ …))A1, A2, …

22

SQL and Duplicates

¨ Biggest difference between relational algebra and
SQL is use of multisets
¤ In SQL, relations are multisets of tuples, not sets

¨ Biggest reason is practical:
¤ Removing duplicate tuples is time consuming!

¨ Must revise definitions of relational algebra
operations to handle duplicates
¤ Mainly affects set-operations: È, Ç, –
¤ (Book explores this topic in depth)

¨ SQL provides ways to remove duplicates for all
operations

23

Example Queries

“Find all branches with at least one bank account.”
SELECT branch_name
FROM account;

¤ Equivalent to typing:
SELECT ALL branch_name
FROM account;

¨ To eliminate duplicates:
SELECT DISTINCT branch_name
FROM account;

+-------------+
| branch_name |
+-------------+
| New York |
| Seattle |
| Los Angeles |
| New York |
| Los Angeles |
+-------------+

+-------------+
| branch_name |
+-------------+
| New York |
| Seattle |
| Los Angeles |
+-------------+

24

Selecting Specific Attributes

¨ Can specify one or more attributes to appear in
result
“Find ID and balance of

all bank accounts.”
SELECT acct_id, balance
FROM account;

¨ Can also specify * to mean “all attributes”
SELECT * FROM account;

¤ Returns all details of
all accounts.

+---------+---------+
| acct_id | balance |
+---------+---------+
A-301	350.00
A-307	275.00
A-318	550.00
A-319	80.00
A-322	275.00
+---------+---------+

+---------+-------------+---------+
| acct_id | branch_name | balance |
+---------+-------------+---------+
A-301	New York	350.00
A-307	Seattle	275.00
A-318	Los Angeles	550.00
A-319	New York	80.00
A-322	Los Angeles	275.00
+---------+-------------+---------+

25

Computing Results

¨ The SELECT clause is a generalized projection
operation
¤ Can compute results based on attributes

SELECT cred_id, credit_limit – balance
FROM credit_account;

¤ Computed values don’t have a (standardized) name!
n Many DBMSes name the 2nd column “credit_limit – balance”

¨ Can also name (or rename) values
SELECT cred_id,

credit_limit – balance AS available_credit
FROM credit_account;

26

WHERE Clause

¨ The WHERE clause specifies a selection predicate
¤ Can use comparison operators:
=, <> equals, not-equals (!= also usually supported)
<, <= less than, less or equal
>, >= greater than, greater or equal

¤ Can refer to any attribute in FROM clause

¤ Can include arithmetic expressions in comparisons

27

WHERE Examples

“Find IDs and balances of all accounts in the Los
Angeles branch.”
SELECT acct_id, balance FROM account
WHERE branch_name = 'Los Angeles';

“Retrieve all details of bank accounts with a balance
less than $300.”
SELECT * FROM account
WHERE balance < 300;

+---------+-------------+---------+
| acct_id | branch_name | balance |
+---------+-------------+---------+
A-307	Seattle	275.00
A-319	New York	80.00
A-322	Los Angeles	275.00
+---------+-------------+---------+

+---------+---------+
| acct_id | balance |
+---------+---------+
| A-318 | 550.00 |
| A-322 | 275.00 |
+---------+---------+

28

Larger Predicates

¨ Can use AND, OR, NOT in WHERE clause
SELECT acct_id, balance FROM account
WHERE branch_name = 'Los Angeles' AND

balance < 300;
SELECT * FROM account
WHERE balance >= 250 AND balance <= 400;

¨ SQL also has BETWEEN and NOT BETWEEN syntax
SELECT * FROM account
WHERE balance BETWEEN 250 AND 400;

¤ Note that BETWEEN includes interval endpoints!

29

String Comparisons

¨ String values can be compared
¤ Lexicographic comparisons
¤ Often, the default is to ignore case!

SELECT 'HELLO' = 'hello'; -- Evaluates to true

¨ Can also do pattern matching with LIKE expression
string_attr LIKE pattern
¤ pattern is a string literal enclosed in single-quotes

n % (percent) matches a substring
n _ (underscore) matches a single character
n Can escape % or _ with a backslash \
n LIKE does case-sensitive comparisons

30

String-Matching Example

“Find all accounts at branches with ‘le’ somewhere in
the name.”
¤ Why? I don’t know…
SELECT * FROM account
WHERE branch_name LIKE '%le%';

+---------+-------------+---------+
| acct_id | branch_name | balance |
+---------+-------------+---------+
A-307	Seattle	275.00
A-318	Los Angeles	550.00
A-322	Los Angeles	275.00
+---------+-------------+---------+

31

String Operations

¨ Regular-expression matching is also part of the
SQL standard (SQL:1999)
¤ string_attr MATCHES regexp

¨ String-matching operations tend to be expensive
¤ Especially patterns with a leading wildcard, e.g. '%abc'

¨ Try to avoid heavy reliance on pattern-matching
¨ If string searching is required, try to pre-digest text

and generate search indexes
¤ Some databases provide “full-text search” capabilities, but

such features are vendor-specific!

32

FROM Clause

¨ Can specify one or more tables in FROM clause
¨ If multiple tables:

¤ Select/project against Cartesian product of relations
-- Produces a row for every combination
-- of input tuples.
SELECT * FROM borrower, loan;

+-----------+---------+---------+---------------+---------+
| cust_name | loan_id | loan_id | branch_name | amount |
+-----------+---------+---------+---------------+---------+
Anderson	L-437	L-419	Seattle	2900.00
Jackson	L-419	L-419	Seattle	2900.00
Lewis	L-421	L-419	Seattle	2900.00
Smith	L-445	L-419	Seattle	2900.00
Anderson	L-437	L-421	San Francisco	7500.00
Jackson	L-419	L-421	San Francisco	7500.00
Lewis	L-421	L-421	San Francisco	7500.00
...				

33

FROM Clause (2)

¨ If tables have overlapping attributes, use
tbl_name.attr_name to distinguish

SELECT * FROM borrower, loan
WHERE borrower.loan_id = loan.loan_id;

¤ All columns can be referred to by
tbl_name.attr_name

¨ This kind of query is called an equijoin
¨ Databases optimize equijoin queries very effectively.

+-----------+---------+---------+---------------+---------+
| cust_name | loan_id | loan_id | branch_name | amount |
+-----------+---------+---------+---------------+---------+
Jackson	L-419	L-419	Seattle	2900.00
Lewis	L-421	L-421	San Francisco	7500.00
Anderson	L-437	L-437	Las Vegas	4300.00
Smith	L-445	L-445	Los Angeles	2000.00
+-----------+---------+---------+---------------+---------+

34

SQL and Joins

¨ SQL provides several different options for
performing joins across multiple tables

¨ This form is the most basic usage
¤ Was in earliest versions of SQL
¤ Doesn’t provide natural joins
¤ Can’t do outer joins either

¨ Will cover other forms of SQL join syntax soon…

35

Renaming Tables

¨ Can specify alternate names in FROM clause too
¤ Write: table AS name
¤ (The AS is optional, but it’s clearer to leave it in.)

¨ Previous example:
“Find the loan with the largest amount.”
¤ Started by finding loans that have an amount smaller than

some other loan’s amount
¤ Used Cartesian product and rename operation
SELECT DISTINCT loan.loan_id
FROM loan, loan AS test
WHERE loan.amount < test.amount;

+---------+
| loan_id |
+---------+
| L-445 |
| L-419 |
| L-437 |
+---------+

36

Renaming Tables (2)

¨ When a table is renamed in FROM clause, can use
the new name in both SELECT and WHERE clauses

¨ Useful for long table names! J
SELECT c.cust_name, l.amount
FROM customer AS c, borrower AS b,

loan AS l
WHERE c.cust_name = b.cust_name AND

b.loan_id = l.loan_id;

37

Set Operations

¨ SQL also provides set operations, like relational
algebra

¨ Operations take two queries and produce an output
relation

¨ Set-union:
select1 UNION select2 ;

¨ Set-intersection:
select1 INTERSECT select2 ;

¨ Set-difference:
select1 EXCEPT select2 ;

¨ Note: selecti are complete SELECT statements!

38

Set-Operation Examples

¨ Find customers with an account or a loan:
SELECT cust_name FROM depositor UNION
SELECT cust_name FROM borrower;

¤ Database automatically eliminates duplicates
¨ Find customers with an account but not a loan:

SELECT cust_name FROM depositor EXCEPT
SELECT cust_name FROM borrower;

¤ Can also put parentheses around SELECT clauses for
readability
(SELECT cust_name FROM depositor)
EXCEPT
(SELECT cust_name FROM borrower);

39

Set Operations and Duplicates

¨ By default, SQL set-operations eliminate duplicate
tuples
¤ Opposite to default behavior of SELECT!

¨ Can keep duplicate tuples by appending ALL to
set operation:
select1 UNION ALL select2 ;
select1 INTERSECT ALL select2 ;
select1 EXCEPT ALL select2 ;

40

How Many Duplicates?

¨ Need to define behavior of “set operations” on
multisets

¨ Given two multiset relations r1 and r2
¤ r1 and r2 have same schema
¤ Some tuple t appears c1 times in r1, and c2 times in r2
r1 ÈALL r2

contains c1 + c2 copies of t

r1 ÇALL r2
contains min(c1, c2) copies of t

r1 –ALL r2
contains max(c1 – c2, 0) copies of t

41

Other Relational Operations

¨ Can actually update definitions of all relational
operations to support multisets

¨ Necessary for using relational algebra to model
execution plans

¨ Not terribly interesting though… J

¨ If you’re curious, see book for details

42

SQL Style Guidelines

¨ Follow good coding style in SQL!
¨ Some recommendations:

¤ Use lowercase names for tables, columns, etc.
¤ Put a descriptive comment above every table
¤ Write all SQL keywords in uppercase
¤ Follow standard indentation scheme

n e.g. indent columns in table declarations by 2-4 spaces

¤ Keep lines to 80 characters or less!
n wrap lines in reasonable places

¨ Note: You will lose points for sloppy SQL.

43

Next Time

¨ Sorting results
¨ Grouping and aggregate functions
¨ Nested queries and many more set operations
¨ How to update SQL databases

44

