RELATIONAL ALGEBRA II

CS121: Relational Databases

Fall 2018 - Lecture 3

Last Lecture

\square Query languages provide support for retrieving information from a database
\square Introduced the relational algebra
\square A procedural query language
\square Six fundamental operations:
■ select, project, set-union, set-difference, Cartesian product, rename
\square Several additional operations, built upon the fundamental operations

- set-intersection, natural join, division, assignment

Extended Operations

\square Relational algebra operations have been extended in various ways

- More generalized
\square More useful!
\square Three major extensions:
\square Generalized projection
\square Aggregate functions
\square Additional join operations
\square All of these appear in SQL standards

Generalized Projection Operation

\square Would like to include computed results into relations
\square e.g. "Retrieve all credit accounts, computing the current 'available credit' for each account."
\square Available credit $=$ credit limit - current balance
\square Project operation is generalized to include computed results
\square Can specify functions on attributes, as well as attributes themselves
\square Can also assign names to computed values
\square (Renaming attributes is also allowed, even though this is also provided by the ρ operator)

Generalized Projection

\square Written as: $\prod_{F_{1}, F_{2}, \ldots, F_{n}}(E)$
$\square F_{i}$ are arithmetic expressions
$\square E$ is an expression that produces a relation
\square Can also name values: F_{i} as name
\square Can use to provide derived attributes
\square Values are always computed from other attributes stored in database
\square Also useful for updating values in database
\square (more on this later)

Generalized Projection Example

\square "Compute available credit for every credit account."
$\Pi_{\text {cred_id, }}$ (limit - balance) as available_credif $($ credit_acct)

cred_id	limit	balance	cred_id	available_credit
C-273	2500	150	C-273	2350
C-291	750	600	C-291	150
C-304	15000	3500	C-304	11500
C-313	300	25	C-313	275

Aggregate Functions

\square Very useful to apply a function to a collection of values to generate a single result
\square Most common aggregate functions:
sum sums the values in the collection
avg computes average of values in the collection count counts number of elements in the collection min returns minimum value in the collection $\max \quad$ returns maximum value in the collection
\square Aggregate functions work on multisets, not sets
\square A value can appear in the input multiple times

Aggregate Function Examples

"Find the total amount owed to the credit company."
$G_{\text {sum(balance) }}($ credit_acct)

4275

cred_id	limit	balance
C-273	2500	150
C-291	750	600
C-304	15000	3500
C-313	300	25
credit_acct		

"Find the maximum available credit of any account."
$\mathcal{G}_{\max (\text { available_credit) }}\left(\Pi_{(\text {limit - balance) as available_credif }}(\right.$ credit_acct $\left.)\right)$

Grouping and Aggregation

\square Sometimes need to compute aggregates on a per-item basis
\square Back to the puzzle database:
puzzle_list(puzzle_name)
completed(person_name, puzzle_name)

puzzle_name
altekruse
soma cube
puzzle box
puzzle_list

\square Examples:
\square How many puzzles has each person completed?
\square How many people have completed each puzzle?

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube
completed	

Grouping and Aggregation (2)

puzzle_name
altekruse
soma cube
puzzle box
puzzle_list

"How many puzzles has each person completed?"

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube

completed
person_name $\mathcal{G}_{\text {count(puzzle_name) }}$ (completed)
\square First, input relation completed is grouped by unique values of person_name
\square Then, count(puzzle_name) is applied separately to each group

Grouping and Aggregation (3)

person_name $\mathcal{G}_{\text {count }}$ (puzzle_name) $($ completed)

Input relation is
grouped by person_name

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Alex	puzzle box
Bob	puzzle box
Bob	soma cube
Carl	altekruse
Carl	puzzle box
Carl	soma cube

Aggregate function is applied to each group

person_name	
Alex	3
Bob	2
Carl	3

Distinct Values

\square Sometimes want to compute aggregates over sets of values, instead of multisets

Example:

- Chage puzzle database to include a completed_times relation, which records multiple solutions of a puzzle
\square How many puzzles has each person completed?
- Using completed_times relation this time

person_name	puzzle_name	seconds
Alex	altekruse	350
Alex	soma cube	45
Bob	puzzle box	240
Carl	altekruse	285
Bob	puzzle box	215
Alex	altekruse	290
completed_times		

Distinct Values (2)

"How many puzzles has each person completed?"
\square Each puzzle appears multiple times now.

person_name	puzzle_name	seconds
Alex	altekruse	350
Alex	soma cube	45
Bob	puzzle box	240
Carl	altekruse	285
Bob	puzzle box	215
Alex	altekruse	290
completed_times		

\square Need to count distinct occurrences of each puzzle's name
person_name $\mathcal{G}_{\text {count-distinct(puzzle_name) }}$ (completed_times)

Eliminating Duplicates

\square Can append -distinct to any aggregate function to specify elimination of duplicates
\square Usually used with count: count-distinct
\square Makes no sense with min, max

General Form of Aggregates

\square General form: $G_{G_{1}, G_{2}, \ldots, G_{n}} \mathcal{G}_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{m}\left(A_{m}\right)}(E)$
$\square E$ evalutes to a relation
\square Leading G_{i} are attributes of E to group on
\square Each F_{i} is aggregate function applied to attribute A_{i} of E
\square First, input relation is divided into groups
\square If no attributes G_{i} specified, no grouping is performed (it's just one big group)
\square Then, aggregate functions applied to each group

General Form of Aggregates (2)

\square General form: ${ }_{G_{1}, G_{2}, \ldots, G_{n}} G_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{m}\left(A_{m}\right)}(E)$
\square Tuples in E are grouped such that:
\square All tuples in a group have same values for attributes $G_{1}, G_{2}, \ldots, G_{n}$
\square Tuples in different groups have different values for

$$
G_{1}, G_{2}, \ldots, G_{n}
$$

\square Thus, the values $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ in each group uniquely identify the group
$\square\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ are a superkey for the result relation

General Form of Aggregates (3)

\square General form: $\quad G_{1,}, G_{2}, \ldots, G_{n} G_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{m}\left(A_{m}\right)}(E)$
\square Tuples in result have the form:
$\left\{g_{1}, g_{2}, \ldots, g_{n}, a_{1}, a_{2}, \ldots, a_{m}\right\}$
$\square g_{i}$ are values for that particular group
$\square a_{i}$ is result of applying F_{i} to the multiset of values of A_{i} in that group
\square Important note: $F_{i}\left(A_{j}\right)$ attributes are unnamed!
\square Informally we refer to them as $F_{i}\left(A_{j}\right)$ in results, but they have no name.
\square Specify a name, same as before: $F_{i}\left(A_{j}\right)$ as attr_name

One More Aggregation Example

"How many people have completed each puzzle?"

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube

completed puzzle_name $\mathcal{G}_{\text {count(person_name) }}$ (completed)
\square What if nobody has tried a particular puzzle?
\square Won't appear in completed relation

One More Aggregation Example

\rightarrow| puzzle_name |
| :--- |
| altekruse |
| soma cube |
| puzzle box |
| clutch box |
| puzzle_list |

\square New puzzle added to puzzle_list relation

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube

\square Would like to see $\{$ "clutch box", 0$\}$ in result...

- "clutch box" won't appear in result!
\square Joining the two tables doesn't help either
\square Natural join won't produce any rows with "clutch box"

Outer Joins

\square Natural join requires that both left and right tables have a matching tuple
$r \bowtie s=\Pi_{R \cup s}\left(\sigma_{r: A_{1}=s . A_{1} \wedge r \cdot A_{2}=s . A_{2} \wedge \ldots \wedge r \cdot A_{n}=s . A_{n}}(r \times s)\right)$
\square Outer ioin is an extension of join operation
\square Designed to handle missing information
\square Missing information is represented by null values in the result
\square null $=$ unknown or unspecified value

Forms of Outer Join

\square Left outer join: $r \rrbracket s$
\square If a tuple $t_{r} \in r$ doesn't match any tuple in s, result contains $\left\{t_{r}\right.$, null, ..., null $\}$
\square If a tuple $t_{s} \in s$ doesn't match any tuple in r, it's excluded
\square Right outer join: $r \bowtie s$
\square If a tuple $t_{r} \in r$ doesn't match any tuple in s, it's excluded
\square If a tuple $t_{s} \in s$ doesn't match any tuple in r, result contains $\left\{\right.$ null, ..., null, t_{s} \}

Forms of Outer Join (2)

\square Full outer join: $r \perp \backslash s$
\square Includes tuples from r that don't match s, as well as tuples from s that don't match r
\square Summary:

$$
r=\begin{array}{|c|c|}
\hline \text { attr1 } & \text { attr2 } \\
\hline a & \mathrm{r} 1 \\
\mathrm{~b} & \mathrm{r} 2 \\
\mathrm{c} & \mathrm{r} 3 \\
\hline
\end{array}
$$

$$
S=\begin{array}{|c|c|}
\hline \text { attr1 } & \text { attr3 } \\
\hline \mathrm{b} & \mathrm{~s} 2 \\
\mathrm{c} & \mathrm{~s} 3 \\
\mathrm{~d} & \mathrm{~s} 4 \\
\hline
\end{array}
$$

$r \bowtie s$		
attr1	attr2	attr3
b	r2	s2
c	r3	s3

$r \bowtie s$		
attr1	attr2	attr3
a	r 1	null
b	r 2	s 2
c	r 3	s 3

$r \propto s$		
attr1	attr2	attr3
b	r2	s2
c	r3	s3
d	null	s4

r D S		
attr1	attr2	attr3
a	r 1	null
b	r 2	s 2
c	r 3	s 3
d	null	s 4

Effects of null Values

\square Introducing null values affects everything!
\square null means "unknown" or "nonexistent"
\square Must specify effect on results when null is present

- These choices are somewhat arbitrary...
\square (Read your database user's manual! ©)
\square Arithmetic operations (,,+- , /) involving null always evaluate to null (e.g. $5+$ null $=$ null)
\square Comparison operations involving null evaluate to unknown
\square unknown is a third truth-value
\square Note: Yes, even null = null evaluates to unknown.

Boolean Operators and unknown

\square and
true \wedge unknown = unknown
false \wedge unknown $=$ false
unknown \wedge unknown $=$ unknown
\square or
true \vee unknown $=$ true
false \vee unknown $=$ unknown
unknown \vee unknown $=$ unknown
\square not
\neg unknown $=$ unknown

Relational Operations

\square For each relational operation, need to specify behavior with respect to null and unknown
\square Select: $\sigma_{P}(E)$

- If P evaluates to unknown for a tuple, that tuple is excluded from result (i.e. definition of σ doesn't change)
\square Natural join: $r \bowtie s$
- Includes a Cartesian product, then a select
- If a common attribute has a null value, tuples are excluded from join result
\square Why?
■ null = (anything) evaluates to unknown

Project and Set-Operations

\square Project: $\Pi(E)$
\square Project operation must eliminate duplicates
\square null value is treated like any other value
\square Duplicate tuples containing null values are also eliminated
\square Union, Intersection, and Difference
\square null values are treated like any other value
\square Set union, intersection, difference computed as expected
\square These choices are somewhat arbitrary
\square null means "value is unknown or missing"...
\square...but in these cases, two null values are considered equal.
\square Technically, two null values aren't the same. (oh well)

Grouping and Aggregation

$\square \ln$ grouping phase:
\square null is treated like any other value

- If two tuples have same values (including null) on the grouping attributes, they end up in same group
\square In aggregation phase:
\square null values are removed from the input multiset before the aggregate function is applied!
- Slightly different from arithmetic behavior; it keeps one null value from wiping out an aggregate computation.
\square If the aggregate function gets an empty multiset for input, the result is null...

■ ...except for count! In that case, count returns 0.

Generalized Projection, Outer Joins

\square Generalized Projection operation:
\square A combination of simple projection and arithmetic operations
\square Easy to figure out from previous rules
\square Outer joins:
\square Behave just like natural join operation, except for padding missing values with null

Back to Our Puzzle!

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube
completed	

\square Use an outer join to include all puzzles, not just solved ones puzzle_list \searrow completed

puzzle_name	person_name
altekruse	Alex
soma cube	Alex
puzzle box	Bob
altekruse	Carl
soma cube	Bob
puzzle box	Carl
puzzle box	Alex
soma cube	Carl
clutch box	null

Counting the Solutions

\square Now, use grouping and aggregation
\square Group on puzzle name
\square Count up the people!
puzzle_name $G_{\text {count(person_name) }}$ (puzzle_list \triangle completed)

\bigcirc				P	
puzzle_name	person_name	puzzle_name	person_name	puzzle_name	
altekruse	Alex	altekruse	Alex	altekruse	2
soma cube	Alex	altekruse	Carl	soma cube	3
puzzle box	Bob	soma cube	Alex	puzzle box	3
altekruse	Carl	soma cube	Bob	clutch box	0
soma cube	Bob	soma cube	Carl		
puzzle box	Carl	puzzle box	Bob		
puzzle box	Alex	puzzle box	Carl		
soma cube	Carl	puzzle box	Alex		
clutch box	null	clutch box	null		

Database Modification

\square Often need to modify data in a database
\square Can use assignment operator \leftarrow for this
\square Operations:
$\square r \leftarrow r \cup E \quad$ Insert new tuples into a relation
$\square r \leftarrow r-E \quad$ Delete tuples from a relation
$\square r \leftarrow \Pi(r) \quad$ Update tuples already in the relation
\square Remember: r is a relation-variable
\square Assignment operator assigns a new relation-value to r
\square Hence, RHS expression may need to include existing version of r, to avoid losing unchanged tuples

Inserting New Tuples

\square Inserting tuples simply involves a union:

$$
r \leftarrow r \cup E
$$

$\square E$ has to have correct arity
\square Can specify actual tuples to insert: completed \leftarrow completed \cup
$\{$ ("Bob", "altekruse"), ("Carl", "clutch box") $\} \ll$ relation
\square Adds two new tuples to completed relation
\square Can specify constant relations as a set of values
\square Each tuple is enclosed with parentheses
\square Entire set of tuples enclosed with curly-braces

Inserting New Tuples (2)

\square Can also insert tuples generated from an expression
\square Example:
"Dave is joining the puzzle club. He has done every puzzle that Bob has done."
\square Find out puzzles that Bob has completed, then construct new tuples to add to completed

Inserting New Tuples (3)

\square How to construct new tuples with name "Dave" and each of Bob's puzzles?
\square Could use a Cartesian product: $\{$ ("Dave") $\} \times \Pi_{\text {puzzle_name }}\left(\sigma_{\text {person_name="Bob"(completed) })}\right.$
\square Or, use generalized projection with a constant:
П"Dave" as person_name, puzzle_name $\left(\sigma_{\text {person_name="Bob" }}\right.$ (completed))
\square Add new tuples to completed relation:
completed \leftarrow completed \cup
П"Dave" as person_name, puzzle_name $\left(\sigma_{\text {person_name="Bob"" }}(\mathbf{c o m p l e t e d})\right)$

Deleting Tuples

\square Deleting tuples uses the - operation:
$r \leftarrow r-E$
\square Example:
Get rid of the "soma cube" puzzle.
puzzle_name
altekruse
soma cube
puzzle box
puzzle_list

Problem:

- completed relation references the puzzle_list relation
- To respect referential integrity constraints, should delete from completed first.

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube
completed	

Deleting Tuples (2)

\square completed references puzzle_list
\square puzzle_name is a key

- completed shouldn't have any values for puzzle_name that don't appear in puzzle_list
\square Delete tuples from completed first.
- Then delete tuples from puzzle_list.
completed \leftarrow completed $-\sigma_{\text {puzzle_name="soma cube"(}}$ (completed)
puzzle_list \leftarrow puzzle_list $-\sigma_{\text {puzzle_name="soma cube" }}\left(p u z z l e _l i s t\right)$
Of course, could also write:
completed $\leftarrow \sigma_{\text {puzzle_name="soma cube" }}$ (completed)

Deleting Tuples (3)

\square In the relational model, we have to think about foreign key constraints ourselves...
\square Relational database systems take care of these things for us, automatically.
\square Will explore the various capabilities and options in a few weeks

Updating Tuples

\square General form uses generalized projection: $r \leftarrow \Pi_{F_{1}, F_{2}, \ldots, F_{n}}(r)$
\square Updates all tuples in r
\square Example:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275
account		

"Add 5\% interest to all bank account balances." account $\leftarrow \prod_{\text {acct_id, branch_name, balance*1.05 }}$ (account)
\square Note: Must include unchanged attributes too
\square Otherwise you will change the schema of account

Updating Some Tuples

\square Updating only some tuples is more verbose
\square Relation-variable is set to the entire result of the evaluation
\square Must include both updated tuples, and non-updated tuples, in result
\square Example:
"Add 5\% interest to accounts with a balance less than \$10,000."
account $\leftarrow \Pi_{\text {acct_id, branch_name, balance*1.05 }}\left(\sigma_{\text {balance<10000 }}(\right.$ account $\left.)\right) \cup$
$\sigma_{\text {balance } \geq 10000}$ (account)

Updating Some Tuples (2)

Another example:
"Add 5\% interest to accounts with a balance less than $\$ 10,000$, and 6% interest to accounts with a balance of $\$ 10,000$ or more."
account $\leftarrow \prod_{\text {acct_id,branch_name,balance*1.05 }}\left(\sigma_{\text {balance<10000 }}(\right.$ account $\left.)\right) \cup$
$\prod_{\text {acct_id,branch_name,balance* } 1.06}\left(\sigma_{\text {balance }} \geq 10000(\right.$ account $\left.)\right)$
\square Don't forget to include any non-updated tuples in your update operations!

Relational Algebra Summary

\square Very expressive query language for retrieving information from a relational database
\square Simple selection, projection
\square Computing correlations between relations using joins
\square Grouping and aggregation operations
\square Can also specify changes to the contents of a relation-variable
\square Inserts, deletes, updates
\square The relational algebra is a procedural query language
\square State a sequence of operations for computing a result

Relational Algebra Summary (2)

\square Benefit of relational algebra is that it can be formally specified and reasoned about
\square Drawback is that it is very verbose!
\square Database systems usually provide much simpler query languages
\square Most popular by far is SQL, the Structured Query Language
\square However, many databases use relational algebra-like operations internally!
\square Great for representing execution plans, due to its procedural nature

Next Time

\square Transition from relational algebra to SQL
\square Start working with "real" databases ©

