
RELATIONAL ALGEBRA II
CS121: Relational Databases
Fall 2018 – Lecture 3

Last Lecture

¨ Query languages provide support for retrieving
information from a database

¨ Introduced the relational algebra
¤ A procedural query language
¤ Six fundamental operations:

n select, project, set-union, set-difference,
Cartesian product, rename

¤ Several additional operations, built upon the
fundamental operations
n set-intersection, natural join, division, assignment

2

Extended Operations

¨ Relational algebra operations have been extended
in various ways
¤ More generalized
¤ More useful!

¨ Three major extensions:
¤ Generalized projection
¤ Aggregate functions
¤ Additional join operations

¨ All of these appear in SQL standards

3

Generalized Projection Operation

¨ Would like to include computed results into relations
¤ e.g. “Retrieve all credit accounts, computing the current

‘available credit’ for each account.”
¤ Available credit = credit limit – current balance

¨ Project operation is generalized to include computed
results
¤ Can specify functions on attributes, as well as attributes

themselves
¤ Can also assign names to computed values
¤ (Renaming attributes is also allowed, even though this is also

provided by the r operator)

4

Generalized Projection

¨ Written as: P (E)
¤ Fi are arithmetic expressions
¤ E is an expression that produces a relation
¤ Can also name values: Fi as name

¨ Can use to provide derived attributes
¤ Values are always computed from other attributes stored in

database

¨ Also useful for updating values in database
¤ (more on this later)

F1, F2, …, Fn

5

Generalized Projection Example

¨ “Compute available credit for every credit
account.”
Pcred_id, (limit – balance) as available_credit(credit_acct)

cred_id limit balance
C-273
C-291
C-304
C-313

2500
750
15000
300

150
600
3500
25

credit_acct

cred_id available_credit
C-273
C-291
C-304
C-313

2350
150
11500
275

6

Aggregate Functions

¨ Very useful to apply a function to a collection of
values to generate a single result

¨ Most common aggregate functions:
sum sums the values in the collection
avg computes average of values in the collection
count counts number of elements in the collection
min returns minimum value in the collection
max returns maximum value in the collection

¨ Aggregate functions work on multisets, not sets
¤ A value can appear in the input multiple times

7

Aggregate Function Examples

“Find the total amount owed
to the credit company.”
Gsum(balance)(credit_acct)

“Find the maximum available credit of any account.”
Gmax(available_credit)(P(limit – balance) as available_credit(credit_acct))

cred_id limit balance
C-273
C-291
C-304
C-313

2500
750
15000
300

150
600
3500
25

credit_acct
4275

11500

8

Grouping and Aggregation

¨ Sometimes need to compute aggregates on a
per-item basis

¨ Back to the puzzle database:
puzzle_list(puzzle_name)
completed(person_name, puzzle_name)

¨ Examples:
¤ How many puzzles has

each person completed?
¤ How many people have

completed each puzzle?

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

9

Grouping and Aggregation (2)

“How many puzzles has each
person completed?”

person_nameGcount(puzzle_name)(completed)
¨ First, input relation completed is grouped by unique values of
person_name

¨ Then, count(puzzle_name) is applied separately to each group

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

10

Grouping and Aggregation (3)

person_nameGcount(puzzle_name)(completed)

person_name puzzle_name
Alex
Alex
Alex

altekruse
soma cube
puzzle box

Bob
Bob

puzzle box
soma cube

Carl
Carl
Carl

altekruse
puzzle box
soma cube

person_name
Alex 3

Bob 2

Carl 3

Input relation is
grouped by person_name

Aggregate function is
applied to each group

11

Distinct Values

¨ Sometimes want to compute aggregates over sets of
values, instead of multisets

Example:
¤ Chage puzzle database to include a completed_times

relation, which records multiple solutions of a puzzle

¨ How many puzzles has
each person completed?
¤ Using completed_times

relation this time

person_name puzzle_name seconds
Alex
Alex
Bob
Carl
Bob
Alex

altekruse
soma cube
puzzle box
altekruse
puzzle box
altekruse

350
45
240
285
215
290

completed_times

12

Distinct Values (2)

“How many puzzles has each person completed?”

¨ Each puzzle appears
multiple times now.

¨ Need to count distinct occurrences of each puzzle’s
name
person_nameGcount-distinct(puzzle_name)(completed_times)

person_name puzzle_name seconds
Alex
Alex
Bob
Carl
Bob
Alex

altekruse
soma cube
puzzle box
altekruse
puzzle box
altekruse

350
45
240
285
215
290

completed_times

13

Eliminating Duplicates

¨ Can append -distinct to any aggregate function to
specify elimination of duplicates
¤ Usually used with count: count-distinct
¤ Makes no sense with min, max

14

General Form of Aggregates

¨ General form: G (E)
¤ E evalutes to a relation
¤ Leading Gi are attributes of E to group on
¤ Each Fj is aggregate function applied to attribute Aj of E

¨ First, input relation is divided into groups
¤ If no attributes Gi specified, no grouping is performed

(it’s just one big group)

¨ Then, aggregate functions applied to each group

G1, G2, …, Gn F1(A1), F2(A2), …, Fm(Am)

15

General Form of Aggregates (2)

¨ General form: G (E)
¨ Tuples in E are grouped such that:

¤ All tuples in a group have same values for attributes
G1, G2, …, Gn

¤ Tuples in different groups have different values for
G1, G2, …, Gn

¨ Thus, the values {g1, g2, …, gn} in each group
uniquely identify the group
¤ {G1, G2, …, Gn} are a superkey for the result relation

G1, G2, …, Gn F1(A1), F2(A2), …, Fm(Am)

16

General Form of Aggregates (3)

¨ General form: G (E)
¨ Tuples in result have the form:

{g1, g2, …, gn, a1, a2, …, am}
¤ gi are values for that particular group
¤ aj is result of applying Fj to the multiset of values of Aj

in that group
¨ Important note: Fj(Aj) attributes are unnamed!

¤ Informally we refer to them as Fj(Aj) in results, but
they have no name.

¤ Specify a name, same as before: Fj(Aj) as attr_name

G1, G2, …, Gn F1(A1), F2(A2), …, Fm(Am)

17

One More Aggregation Example

“How many people have
completed each puzzle?”
puzzle_nameGcount(person_name)(completed)

¨ What if nobody has tried a particular puzzle?
¤ Won’t appear in completed relation

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

18

One More Aggregation Example

¨ New puzzle added to
puzzle_list relation
¤ Would like to see { “clutch box”, 0 } in result…
¤ “clutch box” won’t appear in result!

¨ Joining the two tables doesn’t help either
¤ Natural join won’t produce any rows with “clutch box”

puzzle_name
altekruse
soma cube
puzzle box
clutch box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

19

Outer Joins

¨ Natural join requires that both left and right tables
have a matching tuple
r s = PR È S(s (r ´ s))

¨ Outer join is an extension of join operation
¤ Designed to handle missing information

¨ Missing information is represented by null values in
the result
¤ null = unknown or unspecified value

r.A1=s.A1 Ù r.A2=s.A2 Ù… Ù r.An=s.An

20

Forms of Outer Join

¨ Left outer join: r s
¤ If a tuple tr Î r doesn’t match any tuple in s,

result contains { tr, null, …, null }
¤ If a tuple ts Î s doesn’t match any tuple in r, it’s

excluded
¨ Right outer join: r s

¤ If a tuple tr Î r doesn’t match any tuple in s, it’s
excluded

¤ If a tuple ts Î s doesn’t match any tuple in r,
result contains { null, …, null, ts }

21

Forms of Outer Join (2)

¨ Full outer join: r s
¤ Includes tuples from r that don’t match s,

as well as tuples from s that don’t match r

¨ Summary:
attr1 attr3
b
c
d

s2
s3
s4

r = s =

r sr s r s r s

attr1 attr2
a
b
c

r1
r2
r3

attr1 attr2 attr3
b
c

r2
r3

s2
s3

attr1 attr2 attr3
a
b
c

r1
r2
r3

null
s2
s3

attr1 attr2 attr3
b
c
d

r2
r3

null

s2
s3
s4

attr1 attr2 attr3
a
b
c
d

r1
r2
r3

null

null
s2
s3
s4

22

Effects of null Values

¨ Introducing null values affects everything!
¤ null means “unknown” or “nonexistent”

¨ Must specify effect on results when null is present
¤ These choices are somewhat arbitrary…
¤ (Read your database user’s manual! J)

¨ Arithmetic operations (+, –, *, /) involving null always
evaluate to null (e.g. 5 + null = null)

¨ Comparison operations involving null evaluate to
unknown
¤ unknown is a third truth-value
¤ Note: Yes, even null = null evaluates to unknown.

23

Boolean Operators and unknown

¨ and
true Ù unknown = unknown
false Ù unknown = false
unknown Ù unknown = unknown

¨ or
true Ú unknown = true
false Ú unknown = unknown
unknown Ú unknown = unknown

¨ not
¬ unknown = unknown

24

Relational Operations

¨ For each relational operation, need to specify
behavior with respect to null and unknown

¨ Select: sP(E)
¤ If P evaluates to unknown for a tuple, that tuple is excluded

from result (i.e. definition of s doesn't change)

¨ Natural join: r s
¤ Includes a Cartesian product, then a select
¤ If a common attribute has a null value, tuples are excluded

from join result
¤ Why?

n null = (anything) evaluates to unknown

25

Project and Set-Operations

¨ Project: P(E)
¤ Project operation must eliminate duplicates
¤ null value is treated like any other value
¤ Duplicate tuples containing null values are also eliminated

¨ Union, Intersection, and Difference
¤ null values are treated like any other value
¤ Set union, intersection, difference computed as expected

¨ These choices are somewhat arbitrary
¤ null means “value is unknown or missing”…
¤ …but in these cases, two null values are considered equal.
¤ Technically, two null values aren’t the same. (oh well)

26

Grouping and Aggregation

¨ In grouping phase:
¤ null is treated like any other value
¤ If two tuples have same values (including null) on the

grouping attributes, they end up in same group
¨ In aggregation phase:

¤ null values are removed from the input multiset before the
aggregate function is applied!
n Slightly different from arithmetic behavior; it keeps one null value

from wiping out an aggregate computation.
¤ If the aggregate function gets an empty multiset for input,

the result is null…
n …except for count! In that case, count returns 0.

27

Generalized Projection, Outer Joins

¨ Generalized Projection operation:
¤ A combination of simple projection and arithmetic

operations
¤ Easy to figure out from previous rules

¨ Outer joins:
¤ Behave just like natural join operation, except for

padding missing values with null

28

Back to Our Puzzle!

“How many people
have completed
each puzzle?”

¨ Use an outer join to include all
puzzles, not just solved ones
puzzle_list completed

puzzle_name
altekruse
soma cube
puzzle box
clutch box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

puzzle_name person_name
altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube
clutch box

Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl
null

29

Counting the Solutions

¨ Now, use grouping and aggregation
¤ Group on puzzle name
¤ Count up the people!
puzzle_nameGcount(person_name)(puzzle_list completed)

puzzle_name person_name
altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube
clutch box

Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl
null

puzzle_name person_name
altekruse
altekruse

Alex
Carl

soma cube
soma cube
soma cube

Alex
Bob
Carl

puzzle box
puzzle box
puzzle box

Bob
Carl
Alex

clutch box null

puzzle_name
altekruse
soma cube
puzzle box
clutch box

2
3
3
0

30

Database Modification

¨ Often need to modify data in a database
¨ Can use assignment operator ¬ for this
¨ Operations:

¤ r¬ r È E Insert new tuples into a relation
¤ r¬ r – E Delete tuples from a relation
¤ r¬ P(r) Update tuples already in the relation

¨ Remember: r is a relation-variable
¤ Assignment operator assigns a new relation-value to r
¤ Hence, RHS expression may need to include existing

version of r, to avoid losing unchanged tuples

31

Inserting New Tuples

¨ Inserting tuples simply involves a union:
r¬ r È E
¤ E has to have correct arity

¨ Can specify actual tuples to insert:
completed¬ completed È

{ (“Bob”, “altekruse”), (“Carl”, “clutch box”) }
¤ Adds two new tuples to completed relation

¨ Can specify constant relations as a set of values
¤ Each tuple is enclosed with parentheses
¤ Entire set of tuples enclosed with curly-braces

constant
relation

32

Inserting New Tuples (2)

¨ Can also insert tuples generated from an expression
¨ Example:

“Dave is joining the puzzle club. He has done every
puzzle that Bob has done.”

¤ Find out puzzles that Bob has completed, then construct
new tuples to add to completed

33

Inserting New Tuples (3)

¨ How to construct new tuples with name “Dave” and
each of Bob’s puzzles?
¤ Could use a Cartesian product:

{ (“Dave”) } ´ Ppuzzle_name(sperson_name=“Bob”(completed))

¤ Or, use generalized projection with a constant:
P“Dave” as person_name, puzzle_name(sperson_name=“Bob”(completed))

¨ Add new tuples to completed relation:
completed¬ completed È
P“Dave” as person_name, puzzle_name(sperson_name=“Bob”(completed))

34

Deleting Tuples

¨ Deleting tuples uses the – operation:
r¬ r – E

¨ Example:
Get rid of the “soma cube” puzzle.

Problem:
n completed relation references

the puzzle_list relation
n To respect referential integrity

constraints, should delete from
completed first.

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

35

Deleting Tuples (2)

¨ completed references puzzle_list
¤ puzzle_name is a key
¤ completed shouldn’t have any values for puzzle_name that

don’t appear in puzzle_list
¤ Delete tuples from completed first.
¤ Then delete tuples from puzzle_list.

completed¬ completed – spuzzle_name=“soma cube”(completed)
puzzle_list¬ puzzle_list – spuzzle_name=“soma cube”(puzzle_list)
Of course, could also write:
completed¬ spuzzle_name≠“soma cube”(completed)

36

Deleting Tuples (3)

¨ In the relational model, we have to think about
foreign key constraints ourselves…

¨ Relational database systems take care of these
things for us, automatically.
¤ Will explore the various capabilities and options in a

few weeks

37

Updating Tuples

¨ General form uses generalized projection:
r¬ P (r)

¨ Updates all tuples in r

¨ Example:
“Add 5% interest to all bank account balances.”
account¬ Pacct_id, branch_name, balance*1.05(account)

¤ Note: Must include unchanged attributes too
¤ Otherwise you will change the schema of account

F1, F2, …, Fn acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

38

Updating Some Tuples

¨ Updating only some tuples is more verbose
¤ Relation-variable is set to the entire result of the evaluation
¤ Must include both updated tuples, and non-updated tuples,

in result

¨ Example:
“Add 5% interest to accounts with a balance less than

$10,000.”
account ¬ Pacct_id, branch_name, balance*1.05(sbalance<10000(account)) È

sbalance≥10000(account)

39

Updating Some Tuples (2)

Another example:
“Add 5% interest to accounts with a balance less than

$10,000, and 6% interest to accounts with a balance
of $10,000 or more.”
account¬ Pacct_id,branch_name,balance*1.05(sbalance<10000(account)) È

Pacct_id,branch_name,balance*1.06(sbalance≥10000(account))

¨ Don’t forget to include any non-updated tuples in
your update operations!

40

Relational Algebra Summary

¨ Very expressive query language for retrieving
information from a relational database
¤ Simple selection, projection
¤ Computing correlations between relations using joins
¤ Grouping and aggregation operations

¨ Can also specify changes to the contents of a
relation-variable
¤ Inserts, deletes, updates

¨ The relational algebra is a procedural query
language
¤ State a sequence of operations for computing a result

41

Relational Algebra Summary (2)

¨ Benefit of relational algebra is that it can be formally
specified and reasoned about

¨ Drawback is that it is very verbose!
¨ Database systems usually provide much simpler query

languages
¤ Most popular by far is SQL, the Structured Query Language

¨ However, many databases use relational algebra-like
operations internally!
¤ Great for representing execution plans, due to its

procedural nature

42

Next Time

¨ Transition from relational algebra to SQL
¨ Start working with “real” databases J

43

