RELATIONAL ALGEBRA

CS121: Relational Databases Fall 2018 – Lecture 2

Query Languages

- 2
- A <u>query language</u> specifies how to access the data in the database
- Different kinds of query languages:
 - <u>Declarative</u> languages specify what data to retrieve, but not how to retrieve it
 - Procedural languages specify what to retrieve, as well as the process for retrieving it
- Query languages often include updating and deleting data as well
- Also called <u>data manipulation language</u> (DML)

The Relational Algebra

- 3
- A procedural query language
- Comprised of relational algebra operations
- Relational operations:
 - Take one or two relations as input
 - Produce a relation as output
- Relational operations can be composed together
 - Each operation produces a relation
 - A query is simply a relational algebra expression
- □ Six "fundamental" relational operations
- Other useful operations can be composed from these fundamental operations

"Why is this useful?"

- 4
- SQL is only loosely based on relational algebra
- SQL is much more on the "declarative" end of the spectrum
- Many relational databases use relational algebra operations for representing execution plans
 - Simple, clean, effective abstraction for representing how results will be generated
 - Relatively easy to manipulate for query optimization

Fundamental Relational Algebra Operations

Six fundamental operations:

- σ select operation
- Π project operation
- U set-union operation
 - set-difference operation
- × Cartesian product operation
- ρ rename operation
- Each operation takes one or two relations as input
- Produces another relation as output
- Important details:
 - What tuples are included in the result relation?
 - Any constraints on input schemas? What is schema of result?

Select Operation

- \square Written as: $\sigma_P(r)$
- P is the predicate for selection
 - P can refer to attributes in r (but no other relation!), as well as literal values
 - **Can use comparison operators:** $=, \neq, <, \leq, >, \geq$
 - □ Can combine multiple predicates using: Λ (and), V (or), ¬ (not)
- \Box r is the input relation
- \Box Result relation contains all tuples in *r* for which P is true
- Result schema is identical to schema for r

Select Examples

Using the account relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all tuples for accounts in the Los Angeles branch."

σ_{branch_name="Los Angeles"}(account)

"Retrieve all tuples for accounts in the Los Angeles branch, with a balance under \$300."

σ_{branch_name="Los Angeles" ∧ balance<300}(account)

acct_id	branch_name	balance
A-318	Los Angeles	550
A-322	Los Angeles	275

acct_	id	branch_name	balance
A-322)	Los Angeles	275

Project Operation

□ Written as: $\Pi_{a,b,...}(r)$

- \square Result relation contains only specified attributes of r
 - Specified attributes must actually be in schema of r
 - Result's schema only contains the specified attributes
 - Domains are same as source attributes' domains

Important note:

- Result relation may have fewer rows than input relation!
- Why?
 - Relations are sets of tuples, not multisets

Project Example

Using the account relation:

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

"Retrieve all branch names that have at least one account." $\Pi_{branch_name}(account)$

branch_name	
New York	
Seattle	
Los Angeles	

Result only has three tuples, even though input has five

Result schema is just (branch_name)

Composing Operations

- Input can also be an expression that evaluates to a relation, instead of just a relation
- $\Box \Pi_{acct_id}(\sigma_{balance \geq 300}(account))$
 - Selects the account IDs of all accounts with a balance of \$300 or more
 - Input relation's schema is:
 - Account_schema = (<u>acct_id</u>, branch_name, balance)
 - Final result relation's schema?
 - Just one attribute: (acct_id)
- Distinguish between <u>base</u> and <u>derived</u> relations
 - account is a base relation
 - $\Box \sigma_{balance \ge 300}$ (account) is a derived relation

Set-Union Operation

- \Box Written as: $r \cup s$
- \square Result contains all tuples from r and s
 - Each tuple is unique, even if it's in both r and s
- Constraints on schemas for r and s ?
- \Box r and s must have <u>compatible</u> schemas:
 - r and s must have same <u>arity</u>
 - (same number of attributes)
 - For each attribute i in r and s, r[i] must have the same domain as s[i]
 - Our examples also generally have same attribute names, but not required! Arity and domains are what matter.)

Set-Union Example

More complicated schema: accounts and loans

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

cust_name	acct_id
Johnson	A-318
Smith	A-322
Reynolds	A-319
Lewis	A-307
Reynolds	A-301

depositor

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

Set-Union Example (2)

13

Find names of all customers that have either a bank account or a loan at the bank

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

cust_name	acct_id
Johnson	A-318
Smith	A-322
Reynolds	A-319
Lewis	A-307
Reynolds	A-301

depositor

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

Set-Union Example (3)

- Find names of all customers that have either a bank account or a loan at the bank
 - Easy to find the customers with an account:
 - $\Pi_{\text{cust_name}}(\text{depositor})$
 - Also easy to find customers with a loan:

 $\Pi_{cust_name}(depositor)$

Π_{cust_name}(borrower)

 Π_{cust_name} (borrower)

Result is set-union of these expressions:

 Π_{cust_name} (depositor) U Π_{cust_name} (borrower)

Note that inputs have 8 tuples, but result has 6 tuples.

cust_name
Johnson
Smith
Reynolds
Lewis
Anderson
Jackson

Set-Difference Operation

- \square Written as: r s
- Result contains tuples that are only in r, but not in s
 - Tuples in both r and s are excluded
 - Tuples only in s are also excluded
- Constraints on schemas of r and s?
 - Schemas must be compatible
 - (Exactly like set-union.)

Set-Difference Example

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

cust_name	acct_id	
Johnson	A-318	
Smith	A-322	
Reynolds	A-319	
Lewis	A-307	
Reynolds	A-301	

depositor

cust_name	loan_id
Anderson	L-437
Jackson	L-419
Lewis	L-421
Smith	L-445

borrower

"Find all customers that have an account but not a loan."

Set-Difference Example (2)

Again, each component is easy

All customers that have an account:

 $\Pi_{\text{cust_name}}$ (depositor)

All customers that have a loan:

 Π_{cust_name} (borrower)

Anderson	
Jackson	
Lewis	
Smith	

Result is set-difference of these expressions

 $\Pi_{\text{cust_name}}(\text{depositor}) - \Pi_{\text{cust_name}}(\text{borrower})$

Cartesian Product Operation

- \Box Written as: $r \times s$
 - Read as "r cross s"
- \square <u>No</u> constraints on schemas of *r* and *s*
- □ Schema of result is concatenation of schemas for r and s
- \Box If r and s have overlapping attribute names:
 - <u>All</u> overlapping attributes are included; none are eliminated
 - Distinguish overlapping attribute names by prepending the source relation's name

Example:

- **I** Input relations: r(a, b) and s(b, c)
- **Schema of** $r \times s$ is (a, r.b, s.b, c)

Cartesian Product Operation (2)

- \square Result of $r \times s$
 - Contains every tuple in r, combined with every tuple in s
 - \square If r contains N_r tuples, and s contains N_s tuples, result contains $N_r \times N_s$ tuples
- Allows two relations to be compared and/or combined
 - If we want to correlate tuples in relation r with tuples in relation s...
 - **\square** Compute $r \times s$, then select out desired results with an appropriate predicate

Cartesian Product Example

□ Compute result of borrower × loan

cust_name	loan_id		loan_id	branch_name	amount
Anderson	L-437		L-421	San Francisco	7500
Jackson	L-419		L-445	Los Angeles	2000
Lewis	L-421		L-437	Las Vegas	4300
Smith	L-445		L-419	Seattle	2900
	borrower	•			loan

 \square Result will contain $4 \times 4 = 16$ tuples

Cartesian Product Example (2)

Schema for borrower is:

Borrower_schema = (cust_name, loan_id)

Schema for loan is:

Loan_schema = (<u>loan_id</u>, branch_name, amount)

 \Box Schema for result of borrower \times loan is:

Overlapping attribute names are distinguished by including name of source relation

Cartesian Product Example (3)

Result:

	borrower.	loan.		
cust_name	loan_id	loan_id	branch_name	amount
Anderson	L-437	L-421	San Francisco	7500
Anderson	L-437	L-445	Los Angeles	2000
Anderson	L-437	L-437	Las Vegas	4300
Anderson	L-437	L-419	Seattle	2900
Jackson	L-419	L-421	San Francisco	7500
Jackson	L-419	L-445	Los Angeles	2000
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000
Lewis	L-421	L-437	Las Vegas	4300
Lewis	L-421	L-419	Seattle	2900
Smith	L-445	L-421	San Francisco	7500
Smith	L-445	L-445	Los Angeles	2000
Smith	L-445	L-437	Las Vegas	4300
Smith	L-445	L-419	Seattle	2900

Cartesian Product Example (4)

- Can use Cartesian product to associate related rows between two tables
 - ...but, a lot of extra rows are included!

cust_name	borrower. loan_id	loan. Ioan_id	branch_name	amount
Jackson	L-419	L-437	Las Vegas	4300
Jackson	L-419	L-419	Seattle	2900
Lewis	L-421	L-421	San Francisco	7500
Lewis	L-421	L-445	Los Angeles	2000

 $\Box \text{ Combine Cartesian product with a select operation} \\ \sigma_{borrower.loan_id=loan.loan_id} (borrower \times loan)$

Cartesian Product Example (5)

24

"Retrieve the names of all customers with loans at the Seattle branch."

cust_name	loan_id		loan_id	branch_name	amount
Anderson	L-437		L-421	San Francisco	7500
Jackson	L-419		L-445	Los Angeles	2000
Lewis	L-421		L-437	Las Vegas	4300
Smith	L-445		L-419	Seattle	2900
	borrower	1			loan

- Need both borrower and loan relations
- Correlate tuples in the relations using loan_id
- Then, computing result is easy.

Cartesian Product Example (6)

 Associate customer names with loan details, using Cartesian product and a select:

 $\sigma_{borrower.loan_{id}=loan.loan_{id}}(borrower \times loan)$

Select out loans at Seattle branch:

 $\sigma_{branch_name="Seattle"}(\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan))$ Simplify:

 $\sigma_{borrower.loan_id=loan.loan_id \land branch_name="Seattle"}(borrower \times loan)$

Project results down to customer name:

 $\Pi_{cust_name}(\sigma_{borrower.loan_id=loan.loan_id \land branch_name="Seattle"}(borrower \times loan))$

Final result:

Rename Operation

- Results of relational operations are unnamed
 - Result has a schema, but the relation itself is unnamed
- Can give result a name using the rename operator
- □ Written as: $\rho_x(E)$ (Greek rho, not lowercase "P")
 - \square E is an expression that produces a relation
 - E can also be a named relation or a relation-variable
 - x is new name of relation
- □ More general form is: $\rho_{x(A_1, A_2, ..., A_n)}(E)$
 - Allows renaming of relation's attributes
 - Requirement: E has arity n

Scope of Renamed Relations

- Rename operation ρ only applies within a specific relational algebra expression
 - This <u>does not</u> create a new relation-variable!
 - The new name is only visible to enclosing relational-algebra expressions
- Rename operator is used for two main purposes:
 - Allow a derived relation and its attributes to be referred to by enclosing relational-algebra operations
 - □ Allow a base relation to be used multiple ways in one query
 r × ρ_s(r)
- In other words, rename operation ρ is used to resolve ambiguities within a specific relational algebra expression

Rename Example

28

"Find the ID of the loan with the largest amount."

loan_id	branch_name	amount
L-421	San Francisco	7500
L-445	Los Angeles	2000
L-437	Las Vegas	4300
L-419	Seattle	2900

loan

Hard to find the loan with the largest amount!

(At least, with the tools we have so far...)

- Much easier to find all loans that have an amount smaller than some other loan
- Then, use set-difference to find the largest loan

Rename Example (2)

- How to find all loans with an amount smaller than some other loan?
 - Use Cartesian Product of loan with itself:

loan × loan

- Compare each loan's amount to all other loans
- Problem: Can't distinguish between attributes of left and right loan relations!
- Solution: Use rename operation

 $loan \times \rho_{test}(loan)$

Now, right relation is named test

Rename Example (3)

Find IDs of all loans with an amount smaller than some other loan:

 $\Pi_{\text{loan.loan_id}}(\sigma_{\text{loan.amount} < \text{test.amount}}(\text{loan} \times \rho_{\text{test}}(\text{loan})))$

□ Finally, we can get our result:

 $\Pi_{loan_{id}}(loan) - \Pi_{loan_{id}}(\sigma_{loan,amount < test,amount}(loan \times \rho_{test}(loan)))$

What if multiple loans have max value?
 All loans with max value appear in result.

Additional Relational Operations

- The fundamental operations are sufficient to query a relational database...
- Can produce some large expressions for common operations!
- Several additional operations, defined in terms of fundamental operations:
 - \cap set-intersection
 - N natural join
 - ÷ division
 - \leftarrow assignment

Set-Intersection Operation

 $\Box \text{ Written as: } r \cap s$

$$\Box \ r \cap s = r - (r - s)$$

r - s = the rows in r, but not in s

r - (r - s) = the rows in both r and s

- Relations must have compatible schemas
- Example: find all customers with both a loan and a bank account

 Π_{cust_name} (borrower) $\cap \Pi_{cust_name}$ (depositor)

Natural Join Operation

- 33
- Most common use of Cartesian product is to correlate tuples with the same key-values
 Called a join operation
- □ The <u>natural join</u> is a shorthand for this operation
- $\Box \text{ Written as: } r \bowtie s$
 - r and s must have common attributes
 - The common attributes are usually a key for r and/or s, but certainly don't have to be

Natural Join Definition

- 34
- \square For two relations r(R) and s(S)
- □ Attributes used to perform natural join: $R \cap S = \{A_1, A_2, ..., A_n\}$
- Formal definition:

$$\mathbf{r} \bowtie \mathbf{s} = \prod_{R \cup S} (\sigma_{r,A_1 = s,A_1 \land r,A_2 = s,A_2 \land \dots \land r,A_n = s,A_n} (\mathbf{r} \times \mathbf{s}))$$

- r and s are joined using an equality condition based on their common attributes
- Result is projected so that common attributes only appear once

Natural Join Example

□ Simple example:

"Find the names of all customers with loans."

Result:

 $\Pi_{cust_name}(\sigma_{borrower.loan_id=loan.loan_id}(borrower \times loan))$

Rewritten with natural join:

 $\Pi_{\text{cust_name}}(\text{borrower} \bowtie \text{ loan})$

Natural Join Characteristics

- Very common to compute joins across multiple tables
- \Box Example: customer \bowtie borrower \bowtie loan
- Natural join operation is associative:
 - □ (customer ⋈ borrower) ⋈ loan is equivalent to customer ⋈ (borrower ⋈ loan)
- Note:
 - Even though these expressions are equivalent, order of join operations can dramatically affect query cost!
 - (Keep this in mind for later...)

Division Operation

\square Binary operator: $r \div s$

- Implements a "for each" type of query
 - "Find all rows in r that have one row corresponding to each row in s."
 - Relation r divided by relation s
- Easiest to illustrate with an example:
- Puzzle Database
 - puzzle_list(puzzle_name)
 - Simple list of puzzles by name
 - completed(person_name, puzzle_name)
 - Records which puzzles have been completed by each person

Puzzle Database

"Who has solved every puzzle?"

- Need to find every person in completed that has an entry for every puzzle in puzzle_list
- Divide completed by puzzle_list to get answer:

completed ÷ puzzle_list =

=	person_name
	Alex
	Carl

 Only Alex and Carl have completed every puzzle in *puzzle_list*.

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

puzzle_list

Puzzle Database (2)

"Who has solved every puzzle?"

completed ÷ puzzle_list =

Very reminiscent of integer division

- Result relation contains tuples from completed that are evenly divided by puzzle_name
- Several other kinds of relational division operators
 - e.g. some can compute "remainder" of the division operation

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed

puzzle_list

Division Operation

For $r(R) \div s(S)$

- $\Box Required: S \subset R$
 - All attributes in S must also be in R
- Result has schema R S
 - Result has attributes that are in R but not also in S
 - **(This is why we don't allow S = R)**
- □ Every tuple *t* in result satisfies these conditions: $t \in \prod_{R-S}(r)$
 - $\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R-S] = t \rangle$
 - Every tuple in the result has a row in r corresponding to every row in s

Puzzle Database

Fc	or completed	d ÷ puzzle_	_list	
	Schemas are compatible			
 Result has schema (person_name) Attributes in completed schema, but not also in puzzle list schema 				
	пот 0.000 Г			
		person_name		
		Alex		
		Carl		
	L COD	nnleted ÷ nuzzle	list	

Every tuple t in result satisfies these conditions:

$$t \in \Pi_{R-S}(r)$$

$$\langle \forall t_s \in s : \exists t_r \in r : t_r[S] = t_s[S] \land t_r[R-S] = t \rangle$$

person_name	puzzle_name	
Alex	altekruse	
Alex	soma cube	
Bob	puzzle box	
Carl	altekruse	
Bob	soma cube	
Carl	puzzle box	
Alex	puzzle box	
Carl	soma cube	

completed = r

puzzle_name
altekruse
soma cube
puzzle box
numerica list - a

puzzle_list = s

Division Operation

- Not provided natively in most SQL databases
 - Rarely needed!
 - Easy enough to implement in SQL, if needed

- Will see it in the homework assignments, and on the midterm... ³
 - Often a very nice shortcut for more involved queries

Relation Variables

43

<u>Recall</u>: relation variables refer to a specific relation
 A specific set of tuples, with a particular schema
 Example: account relation

acct_id	branch_name	balance
A-301	New York	350
A-307	Seattle	275
A-318	Los Angeles	550
A-319	New York	80
A-322	Los Angeles	275

account

account is actually technically a relation variable, as are all our named relations so far

Assignment Operation

- Can assign a relation-value to a relation-variable
- 🗆 Written as: relvar E
 - **E** is an expression that evaluates to a relation
- \square Unlike ρ , the name relvar persists in the database
- Often used for temporary relation-variables:

```
temp1 \leftarrow \Pi_{R-S}(r)
temp2 \leftarrow \Pi_{R-S}((temp1 \times s) - \Pi_{R-S,S}(r))
result \leftarrow temp1 - temp2
```

- Query evaluation becomes a sequence of steps
- (This is an implementation of the ÷ operator)
- Can also use assignment operation to modify data
 More about updates next time...