
RELATIONAL ALGEBRA
CS121: Relational Databases
Fall 2018 – Lecture 2

Query Languages

¨ A query language specifies how to access the data in
the database

¨ Different kinds of query languages:
¤ Declarative languages specify what data to retrieve, but not

how to retrieve it
¤ Procedural languages specify what to retrieve, as well as

the process for retrieving it

¨ Query languages often include updating and deleting
data as well

¨ Also called data manipulation language (DML)

2

The Relational Algebra

¨ A procedural query language
¨ Comprised of relational algebra operations
¨ Relational operations:

¤ Take one or two relations as input
¤ Produce a relation as output

¨ Relational operations can be composed together
¤ Each operation produces a relation
¤ A query is simply a relational algebra expression

¨ Six “fundamental” relational operations
¨ Other useful operations can be composed from these

fundamental operations

3

“Why is this useful?”

¨ SQL is only loosely based on relational algebra
¨ SQL is much more on the “declarative” end of the

spectrum
¨ Many relational databases use relational algebra

operations for representing execution plans
¤ Simple, clean, effective abstraction for representing

how results will be generated
¤ Relatively easy to manipulate for query optimization

4

Fundamental Relational Algebra Operations

¨ Six fundamental operations:
σ select operation
Π project operation
∪ set-union operation
– set-difference operation
× Cartesian product operation
ρ rename operation

¨ Each operation takes one or two relations as input
¨ Produces another relation as output
¨ Important details:

¤ What tuples are included in the result relation?
¤ Any constraints on input schemas? What is schema of result?

5

Select Operation

¨ Written as: σP(r)
¨ P is the predicate for selection

¤ P can refer to attributes in r (but no other relation!),
as well as literal values

¤ Can use comparison operators: =, ≠, <, ≤, >, ≥
¤ Can combine multiple predicates using:
∧ (and), ∨ (or), ¬ (not)

¨ r is the input relation
¨ Result relation contains all tuples in r for which P is true
¨ Result schema is identical to schema for r

6

Select Examples

Using the account relation:

“Retrieve all tuples for accounts
in the Los Angeles branch.”
σbranch_name=“Los Angeles”(account)

“Retrieve all tuples for accounts
in the Los Angeles branch,
with a balance under $300.”
σbranch_name=“Los Angeles” ∧ balance<300(account)

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

acct_id branch_name balance
A-318
A-322

Los Angeles
Los Angeles

550
275

acct_id branch_name balance
A-322 Los Angeles 275

7

Project Operation

¨ Written as: Πa,b,…(r)
¨ Result relation contains only specified attributes of r

¤ Specified attributes must actually be in schema of r
¤ Result’s schema only contains the specified attributes
¤ Domains are same as source attributes’ domains

¨ Important note:
¤ Result relation may have fewer rows than input relation!
¤ Why?

n Relations are sets of tuples, not multisets

8

Project Example

Using the account relation:

“Retrieve all branch names that
have at least one account.”
Πbranch_name(account)

¨ Result only has three tuples, even though input has five
¨ Result schema is just (branch_name)

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

branch_name
New York
Seattle
Los Angeles

9

Composing Operations

¨ Input can also be an expression that evaluates to a
relation, instead of just a relation

¨ Πacct_id(σbalance≥300(account))
¤ Selects the account IDs of all accounts with a balance of

$300 or more
¤ Input relation’s schema is:
Account_schema = (acct_id, branch_name, balance)

¤ Final result relation’s schema?
n Just one attribute: (acct_id)

¨ Distinguish between base and derived relations
¤ account is a base relation
¤ σbalance≥300(account) is a derived relation

10

Set-Union Operation

¨ Written as: r ∪ s
¨ Result contains all tuples from r and s

¤ Each tuple is unique, even if it’s in both r and s
¨ Constraints on schemas for r and s ?
¨ r and s must have compatible schemas:

¤ r and s must have same arity
n (same number of attributes)

¤ For each attribute i in r and s, r[i] must have the same
domain as s[i]

¤ (Our examples also generally have same attribute names,
but not required! Arity and domains are what matter.)

11

Set-Union Example

¨ More complicated schema: accounts and loans

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

cust_name acct_id
Johnson
Smith
Reynolds
Lewis
Reynolds

A-318
A-322
A-319
A-307
A-301
depositor

cust_name loan_id
Anderson
Jackson
Lewis
Smith

L-437
L-419
L-421
L-445

borrower

12

Set-Union Example (2)

¨ Find names of all customers that have either a
bank account or a loan at the bank

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

cust_name acct_id
Johnson
Smith
Reynolds
Lewis
Reynolds

A-318
A-322
A-319
A-307
A-301
depositor

cust_name loan_id
Anderson
Jackson
Lewis
Smith

L-437
L-419
L-421
L-445

borrower

13

Set-Union Example (3)

¨ Find names of all customers that have either a bank
account or a loan at the bank
¤ Easy to find the customers

with an account:
Πcust_name(depositor)

¤ Also easy to find customers
with a loan:
Πcust_name(borrower)

¨ Result is set-union of these expressions:
Πcust_name(depositor) ∪ Πcust_name(borrower)

¤ Note that inputs have 8 tuples,
but result has 6 tuples.

cust_name
Johnson
Smith
Reynolds
Lewis

cust_name
Anderson
Jackson
Lewis
Smith

cust_name
Johnson
Smith
Reynolds
Lewis
Anderson
Jackson

Πcust_name(depositor) Πcust_name(borrower)

14

Set-Difference Operation

¨ Written as: r – s
¨ Result contains tuples that are only in r, but not in s

¤ Tuples in both r and s are excluded
¤ Tuples only in s are also excluded

¨ Constraints on schemas of r and s?
¤ Schemas must be compatible
¤ (Exactly like set-union.)

15

Set-Difference Example

“Find all customers that have an account but not a loan.”

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

cust_name acct_id
Johnson
Smith
Reynolds
Lewis
Reynolds

A-318
A-322
A-319
A-307
A-301
depositor

cust_name loan_id
Anderson
Jackson
Lewis
Smith

L-437
L-419
L-421
L-445

borrower

16

Set-Difference Example (2)

¨ Again, each component is easy
¤ All customers that have an account:
Πcust_name(depositor)

¤ All customers that have a loan:
Πcust_name(borrower)

¨ Result is set-difference of these expressions
Πcust_name(depositor) – Πcust_name(borrower)

cust_name
Johnson
Smith
Reynolds
Lewis

cust_name
Anderson
Jackson
Lewis
Smith

cust_name
Johnson
Reynolds

Πcust_name(depositor) Πcust_name(borrower)

17

Cartesian Product Operation

¨ Written as: r × s
¤ Read as “r cross s”

¨ No constraints on schemas of r and s
¨ Schema of result is concatenation of schemas for r and s
¨ If r and s have overlapping attribute names:

¤ All overlapping attributes are included; none are eliminated
¤ Distinguish overlapping attribute names by prepending the source

relation’s name

¨ Example:
¤ Input relations: r(a, b) and s(b, c)
¤ Schema of r × s is (a, r.b, s.b, c)

18

Cartesian Product Operation (2)

¨ Result of r × s
¤ Contains every tuple in r, combined with every tuple in s
¤ If r contains Nr tuples, and s contains Ns tuples, result

contains Nr × Ns tuples
¨ Allows two relations to be compared and/or

combined
¤ If we want to correlate tuples in relation r with tuples in

relation s…
¤ Compute r × s, then select out desired results with an

appropriate predicate

19

Cartesian Product Example

¨ Compute result of borrower × loan

¨ Result will contain 4 × 4 = 16 tuples

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

cust_name loan_id
Anderson
Jackson
Lewis
Smith

L-437
L-419
L-421
L-445

borrower

20

Cartesian Product Example (2)

¨ Schema for borrower is:
Borrower_schema = (cust_name, loan_id)

¨ Schema for loan is:
Loan_schema = (loan_id, branch_name, amount)

¨ Schema for result of borrower × loan is:
(cust_name, borrower.loan_id,
loan.loan_id, branch_name, amount)
n Overlapping attribute names are distinguished by including

name of source relation

21

Cartesian Product Example (3)

Result:
cust_name

borrower.
loan_id

loan.
loan_id branch_name amount

Anderson
Anderson
Anderson
Anderson
Jackson
Jackson
Jackson
Jackson
Lewis
Lewis
Lewis
Lewis
Smith
Smith
Smith
Smith

L-437
L-437
L-437
L-437
L-419
L-419
L-419
L-419
L-421
L-421
L-421
L-421
L-445
L-445
L-445
L-445

L-421
L-445
L-437
L-419
L-421
L-445
L-437
L-419
L-421
L-445
L-437
L-419
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle
San Francisco
Los Angeles
Las Vegas
Seattle
San Francisco
Los Angeles
Las Vegas
Seattle
San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900
7500
2000
4300
2900
7500
2000
4300
2900
7500
2000
4300
2900

22

Cartesian Product Example (4)

¨ Can use Cartesian product to associate related rows
between two tables
¤ …but, a lot of extra rows are included!

¨ Combine Cartesian product with a select operation
σborrower.loan_id=loan.loan_id(borrower × loan)

cust_name
borrower.
loan_id

loan.
loan_id branch_name amount

…
Jackson
Jackson
Lewis
Lewis
…

…
L-419
L-419
L-421
L-421
…

…
L-437
L-419
L-421
L-445
…

…
Las Vegas
Seattle
San Francisco
Los Angeles
…

…
4300
2900
7500
2000
…

23

Cartesian Product Example (5)

¨ “Retrieve the names of all customers with loans at the
Seattle branch.”

¨ Need both borrower and loan relations
¨ Correlate tuples in the relations using loan_id
¨ Then, computing result is easy.

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

cust_name loan_id
Anderson
Jackson
Lewis
Smith

L-437
L-419
L-421
L-445

borrower

24

Cartesian Product Example (6)

¨ Associate customer names with loan details, using Cartesian
product and a select:
σborrower.loan_id=loan.loan_id(borrower × loan)

¨ Select out loans at Seattle branch:
σbranch_name=“Seattle”(σborrower.loan_id=loan.loan_id(borrower × loan))
Simplify:
σborrower.loan_id=loan.loan_id ∧ branch_name=“Seattle”(borrower × loan)

¨ Project results down to customer name:
Πcust_name(σborrower.loan_id=loan.loan_id ∧ branch_name=“Seattle”(borrower × loan))

¨ Final result: cust_name
Jackson

25

Rename Operation

¨ Results of relational operations are unnamed
¤ Result has a schema, but the relation itself is unnamed

¨ Can give result a name using the rename operator
¨ Written as: ρx(E) (Greek rho, not lowercase “P”)

¤ E is an expression that produces a relation
¤ E can also be a named relation or a relation-variable
¤ x is new name of relation

¨ More general form is: ρ (E)
¤ Allows renaming of relation’s attributes
¤ Requirement: E has arity n

x(A1, A2, …, An)

26

Scope of Renamed Relations

¨ Rename operation ρ only applies within a specific
relational algebra expression
¤ This does not create a new relation-variable!
¤ The new name is only visible to enclosing relational-algebra

expressions

¨ Rename operator is used for two main purposes:
¤ Allow a derived relation and its attributes to be referred to by

enclosing relational-algebra operations
¤ Allow a base relation to be used multiple ways in one query

n r × ρs(r)

¨ In other words, rename operation ρ is used to resolve
ambiguities within a specific relational algebra expression

27

Rename Example

¨ “Find the ID of the loan with the largest amount.”

¤ Hard to find the loan with the largest amount!
n (At least, with the tools we have so far…)

¤ Much easier to find all loans that have an amount smaller
than some other loan

¤ Then, use set-difference to find the largest loan

loan_id branch_name amount
L-421
L-445
L-437
L-419

San Francisco
Los Angeles
Las Vegas
Seattle

7500
2000
4300
2900

loan

28

Rename Example (2)

¨ How to find all loans with an amount smaller than
some other loan?
¤ Use Cartesian Product of loan with itself:
loan × loan

¤ Compare each loan’s amount to all other loans

¨ Problem: Can’t distinguish between attributes of left
and right loan relations!

¨ Solution: Use rename operation
loan × ρtest(loan)
¤ Now, right relation is named test

29

Rename Example (3)

¨ Find IDs of all loans with an amount smaller than
some other loan:
Πloan.loan_id(σloan.amount<test.amount(loan × ρtest(loan)))

¨ Finally, we can get our result:
Πloan_id(loan) –
Πloan.loan_id(σloan.amount<test.amount(loan × ρtest(loan)))

¨ What if multiple loans have max value?
¤ All loans with max value appear in result.

loan_id
L-421

30

Additional Relational Operations

¨ The fundamental operations are sufficient to query
a relational database…

¨ Can produce some large expressions for common
operations!

¨ Several additional operations, defined in terms of
fundamental operations:
∩ set-intersection

natural join
÷ division
⟵ assignment

31

Set-Intersection Operation

¨ Written as: r ∩ s
¨ r ∩ s = r – (r – s)
r – s = the rows in r, but not in s
r – (r – s) = the rows in both r and s

¨ Relations must have compatible schemas
¨ Example: find all customers with both a loan and a

bank account
Πcust_name(borrower) ∩ Πcust_name(depositor)

32

Natural Join Operation

¨ Most common use of Cartesian product is to
correlate tuples with the same key-values
¤ Called a join operation

¨ The natural join is a shorthand for this operation
¨ Written as: r s

¤ r and s must have common attributes
¤ The common attributes are usually a key for
r and/or s, but certainly don’t have to be

33

Natural Join Definition

¨ For two relations r(R) and s(S)
¨ Attributes used to perform natural join:
R ∩ S = {A1, A2, …, An}

¨ Formal definition:
r s = ΠR ∪ S(σ (r × s))
¤ r and s are joined using an equality condition based on

their common attributes
¤ Result is projected so that common attributes only

appear once

r.A1=s.A1 ∧ r.A2=s.A2 ∧… ∧ r.An=s.An

34

Natural Join Example

¨ Simple example:
“Find the names of all customers with loans.”

¨ Result:
Πcust_name(σborrower.loan_id=loan.loan_id(borrower × loan))

¨ Rewritten with natural join:
Πcust_name(borrower loan)

35

Natural Join Characteristics

¨ Very common to compute joins across multiple tables
¨ Example: customer borrower loan
¨ Natural join operation is associative:

¤ (customer borrower) loan is equivalent to
customer (borrower loan)

¨ Note:
¤ Even though these expressions are equivalent, order of join

operations can dramatically affect query cost!
¤ (Keep this in mind for later…)

36

Division Operation

¨ Binary operator: r ÷ s
¨ Implements a “for each” type of query

¤ “Find all rows in r that have one row corresponding to
each row in s.”

¤ Relation r divided by relation s
¨ Easiest to illustrate with an example:
¨ Puzzle Database
puzzle_list(puzzle_name)

n Simple list of puzzles by name
completed(person_name, puzzle_name)

n Records which puzzles have been completed by each person

37

Puzzle Database

“Who has solved every puzzle?”
¨ Need to find every person in completed

that has an entry for every puzzle in
puzzle_list

¨ Divide completed by puzzle_list to get
answer:
completed ÷ puzzle_list =

¨ Only Alex and Carl have completed
every puzzle in puzzle_list.

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed
person_name
Alex
Carl

38

Puzzle Database (2)

“Who has solved every puzzle?”
completed ÷ puzzle_list =

¨ Very reminiscent of integer division
¤ Result relation contains tuples from
completed that are evenly divided by
puzzle_name

¨ Several other kinds of relational division
operators
¤ e.g. some can compute “remainder” of

the division operation

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed

person_name
Alex
Carl

39

Division Operation

For r(R) ÷ s(S)
¨ Required: S ⊂ R

¤ All attributes in S must also be in R
¨ Result has schema R – S

¤ Result has attributes that are in R but not also in S
¤ (This is why we don’t allow S = R)

¨ Every tuple t in result satisfies these conditions:
t ∈ ΠR–S(r)
⟨ ∀ts ∈ s : ∃tr ∈ r : tr[S] = ts[S] ∧ tr[R–S] = t ⟩

n Every tuple in the result has a row in r corresponding to
every row in s

40

Puzzle Database

For completed ÷ puzzle_list
¨ Schemas are compatible
¨ Result has schema (person_name)

¤ Attributes in completed schema, but
not also in puzzle_list schema

¨ Every tuple t in result satisfies these
conditions:
t ∈ ΠR–S(r)
⟨ ∀ts ∈ s : ∃tr ∈ r : tr[S] = ts[S] ∧ tr[R–S] = t ⟩

puzzle_name
altekruse
soma cube
puzzle box

puzzle_list = s

person_name puzzle_name
Alex
Alex
Bob
Carl
Bob
Carl
Alex
Carl

altekruse
soma cube
puzzle box
altekruse
soma cube
puzzle box
puzzle box
soma cube

completed = r
person_name
Alex
Carl

completed ÷ puzzle_list

41

Division Operation

¨ Not provided natively in most SQL databases
¤ Rarely needed!
¤ Easy enough to implement in SQL, if needed

¨ Will see it in the homework assignments, and on the
midterm… J
¤ Often a very nice shortcut for more involved queries

42

Relation Variables

¨ Recall: relation variables refer to a specific relation
¤ A specific set of tuples, with a particular schema

¨ Example: account relation

¤ account is actually technically a relation variable,
as are all our named relations so far

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

43

Assignment Operation

¨ Can assign a relation-value to a relation-variable
¨ Written as: relvar⟵ E

¤ E is an expression that evaluates to a relation
¨ Unlike ρ, the name relvar persists in the database
¨ Often used for temporary relation-variables:

temp1⟵ ΠR–S(r)
temp2⟵ ΠR–S((temp1 × s) – ΠR–S,S(r))
result⟵ temp1 – temp2

¤ Query evaluation becomes a sequence of steps
¤ (This is an implementation of the ÷ operator)

¨ Can also use assignment operation to modify data
¤ More about updates next time…

44

