
COURSE OVERVIEW
THE RELATIONAL MODEL
CS121: Relational Databases
Fall 2018 – Lecture 1

Course Overview

¨ Introduction to relational database systems
¤ Theory and use of relational databases

¨ Focus on:
¤ The Relational Model and relational algebra
¤ SQL (the Structured Query Language)
¤ The Entity-Relationship model
¤ Database schema design and normal forms
¤ Various common uses of database systems

¨ By end of course:
¤ Should be very comfortable using relational databases
¤ Familiar with basic relational database theory

2

Textbook

¨ No textbook is required for the course
¤ The lecture slides contain most of the relevant details
¤ Other essential materials are provided with the assignments
¤ I also make lecture recordings available

¨ A great book: Database System Concepts, 5th ed.
¤ Silberschatz, Korth, Sudarshan
¤ (The current edition is 6th; they messed a lot of things up…)
¤ Covers theory, use, and implementation of relational

databases, so good to have for 121/122/123 sequence

3

Assignments

¨ Assignments are given approximately weekly
¤ Set of problems focusing on that week’s material
¤ Most include hands-on practice with real databases
¤ Made available around Monday/Tuesday each week
¤ Due approx. one week later: Tuesdays at 5pm

¨ Midterm and final exam are typically 4-6 hours long
¨ Assignment and exam weighting:

¤ 8 assignments, comprising 70% of your grade
¤ Midterm counts for 15% of your grade
¤ Final exam counts for 15% of your grade

4

Course Website and Submissions

¨ CS121 is on the Caltech Moodle
¤ https://courses.caltech.edu/course/view.php?id=3125
¤ 2018 enrollment key: truncate

¨ Please enroll in the course as soon as possible!
¤ I will make class announcements via Moodle
¤ You will submit your assignments via Moodle

¨ All assignments will be submitted on the Moodle
¤ Upload a TAR or ZIP archive with a specific structure

5

Grading Policies

¨ Submit assignments on time!
¨ Late assignments and exams will be penalized!

¤ Up to 1 day (24 hours) late: 10% penalty
¤ Up to 2 days (48 hours) late: 30% penalty
¤ Up to 3 days (72 hours) late: 60% penalty
¤ After 3 days, don’t bother. L

¨ But, extensions are available:
¤ A note from Dean’s Office or Health Center is helpful
¤ You also have 3 “late tokens” to use however you want

n Each late token is worth a 24-hour extension
n Can’t use late tokens on the final exam without my permission

6

Database Terminology

¨ Database – an organized collection of information
¤ A very generic term…
¤ Covers flat text-files with simple records…
¤ …all the way up to multi-TB data warehouses!
¤ Some means to query this set of data as a unit, and

usually some way to update it as well
¨ Database Management System (DBMS)

¤ Software that manages databases
n Create, modify, query, backup/restore, etc.

¤ Sometimes just “database system”

7

Before DBMSes Existed…

¨ Typical approach:
¤ Ad-hoc or purpose-built data files
¤ Special-built programs implemented various operations

against the database
¨ Want to perform new operations?

¤ Create new programs to manipulate the data files!
¨ Want to change the data model?

¤ Update all the programs that access the data!
¨ How to implement transactions? Security? Integrity

constraints?

8

Enter the DBMS

¨ Provide layers of abstraction to isolate users,
developers from database implementation
¤ Physical level: how values are stored/managed on disk
¤ Logical level: specification of records and fields
¤ View level: queries and operations that users can perform

(typically through applications)

¨ Provide general-purpose database capabilities that
specific applications can utilize
¤ Specification of database schemas
¤ Mechanism for querying and manipulating records

9

Kinds of Databases

¨ Many kinds of databases, based on usage
¨ Amount of data being managed

¤ embedded databases: small, application-specific systems
(e.g. SQLite, BerkeleyDB)

¤ data warehousing: vast quantities of data (e.g. Oracle)
¨ Type/frequency of operations being performed

¤ OLTP: Online Transaction Processing
n “Transaction-oriented” operations like buying a product or booking

an airline flight

¤ OLAP: Online Analytical Processing
n Storage and analysis of very large amounts of data
n e.g. “What are my top selling products in each sales region?”

10

Data Models

¨ Databases must represent:
¤ the data itself (typically structured in some way)
¤ associations between different data values
¤ optionally, constraints on data values

¨ What kind of data can be modeled?
¨ What kinds of associations can be represented?
¨ The data model specifies:

¤ what data can be stored (and sometimes how it is stored)
¤ associations between different data values
¤ what constraints can be enforced
¤ how to access and manipulate the data

11

Data Models (2)

¨ This course focuses on the Relational Model
¤ SQL (Structured Query Language) draws heavily from the

relational model
¤ Most database systems use the relational model

¨ Also focuses on the Entity-Relationship Model
¤ Much higher level model than relational model
¤ Useful for modeling abstractions
¤ Very useful for database design!
¤ Not supported by most databases, but used in many

database design tools
¤ Easy to translate into the relational model

12

History of the Relational Model

¨ Invented by Edgar F. (“Ted”) Codd in early 1970s
¨ Focus was data independence

¤ Previous data models required physical-level design and
implementation

¤ Changes to a database schema were very costly to
applications that accessed the database

¨ IBM, Oracle were first implementers of relational
model (1977)
¤ Usage spread very rapidly through software industry
¤ SQL was a particularly powerful innovation

13

The Relational Model and SQL

Before we start:
¨ SQL is loosely based on the relational model
¨ Some terms appear in both the relational model

and in SQL…
…but they aren’t exactly the same!

¨ Be careful if you already know some SQL
¤ Don’t assume that similarly named concepts are

identical. They’re not!

17

Relations

¨ Relations are basically tables of data
¤ Each row represents a record in the relation

¨ A relational database is
a set of relations
¤ Each relation has a unique

name in the database

¨ Each row in the table specifies a relationship between
the values in that row
¤ The account ID “A-307”, branch name “Seattle”, and

balance “275” are all related to each other

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

18

Relations and Attributes

¨ Each relation has some number of attributes
¤ Sometimes called “columns”

¨ Each attribute has a domain
¤ Specifies the set of valid values for the attribute

¨ The account relation:
¤ 3 attributes
¤ Domain of balance is the set

of nonnegative integers
¤ Domain of branch_name is the set of all valid branch names

in the bank

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

account

19

Tuples and Attributes

¨ Each row is called a tuple
¤ A fixed-size, ordered set of name-value pairs

¨ A tuple variable can refer to any valid tuple in a relation
¨ Each attribute in the tuple has a unique name
¨ Can also refer to attributes by index

¤ Attribute 1 is the first attribute, etc.

¨ Example:
¤ Let tuple variable t refer to first

tuple in account relation
¤ t[balance] = 350
¤ t[2] = “New York”

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

account

20

Tuples and Relations

¨ A relation is a set of tuples
¤ Each tuple appears exactly once

n Note: SQL tables are multisets! (Sometimes called bags.)

¤ If two tuples t1 and t2 have the same values for all
attributes, then t1 and t2 are the same tuple (i.e. t1 = t2)

¨ The order of tuples in a relation is not relevant

22

Relation Schemas

¨ Every relation has a schema
¤ Specifies the type information for relations
¤ Multiple relations can have the same schema

¨ A relation schema includes:
¤ an ordered set of attributes
¤ the domain of each attribute

¨ Naming conventions:
¤ Relation names are written as all lowercase
¤ Relation schema’s name is capitalized

¨ For a relation r and relation schema R:
¤ Write r(R) to indicate that the schema of r is R

23

Schema of account Relation

¨ The relation schema of account is:
Account_schema = (acct_id, branch_name, balance)

¨ To indicate that account has
schema Account_schema:
account(Account_schema)

¨ Important note:
¤ Domains are not stated explicitly in this notation!

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

account

24

Relation Schemas

¨ Relation schemas are ordered sets of attributes
¤ Can use set operations on them

¨ Examples:
Relations r(R) and s(S)

n Relation r has schema R
n Relation s has schema S

R ∩ S
n The set of attributes that R and S have in common

R – S
n The set of attributes in R that are not also in S
n (And, the attributes are in the same order as R)

K ⊆ R
n K is some subset of the attributes in relation schema R

25

Attribute Domains

¨ The relational model constrains attribute domains to
be atomic
¤ Values are indivisible units

¨ Mainly a simplification
¤ Virtually all relational database systems provide non-atomic

data types

¨ Attribute domains may also include the null value
¤ null = the value is unknown or unspecified
¤ null can often complicate things. Generally considered

good practice to avoid wherever reasonable to do so.

26

Relations and Relation Variables

¨ More formally:
¨ account is a relation variable

¤ A name associated with a
specific schema, and a set of
tuples that satisfies that schema

¤ (sometimes abbreviated “relvar”)
¨ A specific set of tuples with the same schema is called

a relation value (sometimes abbreviated “relval”)
¤ (Formally, this can also be called a relation)
¤ Can be associated with a relation variable
¤ Or, can be generated by applying relational operations

to one or more relation variables

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

27

Relations and Relation Variables (2)

¨ Problem:
¤ The term “relation” is often

used in slightly different ways

¨ “Relation” usually means the
collection of tuples
¤ i.e. “relation” usually means “relation value”

¨ It is often used less formally to refer to a relation
variable and its associated relation value
¤ e.g. “the account relation” is really a relation variable that holds

a specific relation value

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

The account relation

28

Distinguishing Tuples

¨ Relations are sets of tuples…
¤ No two tuples can have the same values for all

attributes…
¤ But, some tuples might have the same values for some

attributes
¨ Example:

¤ Some accounts have
the same balance

¤ Some accounts are at
the same branch

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

29

Keys

¨ Keys are used to distinguish individual tuples
¤ A superkey is a set of attributes that uniquely identifies

tuples in a relation

¨ Example:
{acct_id} is a superkey

¨ Is {acct_id, balance} a superkey?
¤ Yes! Every tuple will have a unique set of values for this

combination of attributes.
¨ Is {branch_name} a superkey?

¤ No. Each branch can have multiple accounts

acct_id branch_name balance
A-301
A-307
A-318
A-319
A-322

New York
Seattle
Los Angeles
New York
Los Angeles

350
275
550
80
275
account

30

Superkeys and Candidate Keys

¨ A superkey is a set of attributes that uniquely
identifies tuples in a relation

¨ Adding attributes to a superkey produces another
superkey
¤ If {acct_id} is a superkey, so is {acct_id, balance}
¤ If a set of attributes K ⊆ R is a superkey,

so is any superset of K
¤ Not all superkeys are equally useful…

¨ A minimal superkey is called a candidate key
¤ A superkey for which no proper subset is a superkey
¤ For account, only {acct_id} is a candidate key

31

Primary Keys

¨ A relation might have several candidate keys
¨ In these cases, one candidate key is chosen as the

primary means of uniquely identifying tuples
¤ Called a primary key

¨ Example: customer relation
¤ Candidate keys could be:

{cust_id}
{cust_ssn}

¤ Choose primary key:
{cust_id}

cust_id cust_name cust_ssn
23-652
15-202
23-521
…

Joe Smith
Ellen Jones
Dave Johnson
…

330-25-8822
221-30-6551
005-81-2568
…

customer

32

Primary Keys (2)

¨ Keys are a property of the relation schema, not
individual tuples
¤ Applies to all tuples in the relation

¨ Primary key attributes are listed first in relation
schema, and are underlined

¨ Examples:
Account_schema = (acct_id, branch_name, balance)
Customer_schema = (cust_id, cust_name, cust_ssn)

¨ Only indicate primary keys in this notation
¤ Other candidate keys are not specified

33

Primary Keys (3)

¨ Multiple records cannot have the same values for a
primary key!
¤ …or any candidate key, for that matter…

¨ Example: customer(cust_id, cust_name, cust_ssn)

¤ Two customers cannot have the same ID.
¨ This is an example of an invalid relation

¤ The set of tuples doesn’t satisfy the required constraints

cust_id cust_name cust_ssn
23-652
15-202
23-521
15-202
…

Joe Smith
Ellen Jones
Dave Johnson
Albert Stevens
…

330-25-8822
221-30-6551
005-81-2568
450-22-5869
…

customer

34

Keys Constrain Relations

¨ Primary keys constrain the set of tuples that can
appear in a relation
¤ Same is true for all superkeys

¨ For a relation r with schema R
¤ If K ⊆ R is a superkey then
⟨ ∀t1, t2 ∈ r(R) : t1[K] = t2[K] : t1[R] = t2[R] ⟩

¤ i.e. if two tuple-variables have the same values for the
superkey attributes, then they refer to the same tuple
n t1[R] = t2[R] is equivalent to saying t1 = t2

35

Choosing Candidate Keys

¨ Since candidate keys constrain the tuples that can be
stored in a relation…
¤ Attributes that would make good (or bad) candidate keys

depend on what is being modeled

¨ Example: customer name as candidate key?
¤ Very likely that multiple people will have same name
¤ Thus, not a good idea to use it as a candidate key

¨ These constraints motivated by external requirements
¤ Need to understand what we are modeling in the database

36

Foreign Keys

¨ One relation schema can include the attributes of
another schema’s primary key

¨ Example: depositor relation
¤ Depositor_schema = (cust_id, acct_id)
¤ Associates customers with bank accounts
¤ cust_id and acct_id are both foreign keys

n cust_id references the primary key of customer
n acct_id references the primary key of account

¤ depositor is the referencing relation
n It refers to the customer and account relations

¤ customer and account are the referenced relations

37

depositor Relation

¨ depositor relation references
customer and account

¨ Represents relationships between
customers and their accounts

¨ Example: Joe Smith’s accounts
¤ “Joe Smith” has an account at the “Los Angeles”

branch, with a balance of 550.

cust_id cust_name cust_ssn
23-652
15-202
23-521
…

Joe Smith
Ellen Jones
Dave Johnson
…

330-25-8822
221-30-6551
005-81-2568
…

customer

acct_id branch_name balance
A-301
A-307
A-318
…

New York
Seattle
Los Angeles
…

350
275
550
…

account

cust_id acct_id
15-202
23-521
23-652
…

A-301
A-307
A-318
…

depositor

38

Foreign Key Constraints

¨ Tuples in depositor relation specify values for cust_id
¤ customer relation must contain a tuple corresponding to each cust_id

value in depositor

¨ Same is true for acct_id values and account relation
¨ Valid tuples in a relation are also constrained by foreign key

references
¤ Called a foreign-key constraint

¨ Consistency between two dependent relations is called
referential integrity
¤ Every foreign key value must have a corresponding primary key value

39

Foreign Key Constraints (2)

¨ Given a relation r(R)
¤ A set of attributes K ⊆ R is the primary key for R

¨ Another relation s(S) references r
¤ K ⊆ S too
¤ ⟨ ∀ts ∈ s : ∃tr ∈ r : ts[K] = tr[K] ⟩

¨ Notes:
¤ K is not required to be a candidate key for S, only R
¤ K may also be part of a larger candidate key for S

40

Primary Key of depositor Relation?

¨ Depositor_schema = (cust_id, acct_id)
¨ If {cust_id} is the primary key:

¤ A customer can only have one account
n Each customer’s ID can appear only once in depositor

¤ An account could be owned by multiple customers
¨ If {acct_id} is the primary key:

¤ Each account can be owned by only one customer
n Each account ID can appear only once in depositor

¤ Customers could own multiple accounts
¨ If {cust_id, acct_id} is the primary key:

¤ Customers can own multiple accounts
¤ Accounts can be owned by multiple customers

¨ Last option is how most banks really work

cust_id acct_id
15-202
23-521
23-652
…

A-301
A-307
A-318
…

depositor

41

