COURSE OVERVIEW
THE RELATIONAL MODEL

Course Overview

Introduction to relational database systems
Theory and use of relational databases

Focus on:
The Relational Model and relational algebra
SQL (the Structured Query Language)
The Entity-Relationship model
Database schema design and normal forms
Various common uses of database systems

By end of course:
Should be very comfortable using relational databases
Familiar with basic relational database theory

Textbook

No textbook is required for the course
The lecture slides contain most of the relevant details
Other essential materials are provided with the assignments

| also make lecture recordings available

A great book: Database System Concepts, 5" ed.

Silberschatz, Korth, Sudarshan
(The current edition is 6™; they messed a lot of things up...)

Covers theory, use, and implementation of relational
databases, so good to have for 121 /122 /123 sequence

Assignments

Assignments are given approximately weekly
Set of problems focusing on that week’s material
Most include hands-on practice with real databases
Made available around Monday /Tuesday each week
Due approx. one week later: Tuesdays at S5pm

Midterm and final exam are typically 4-6 hours long

Assignment and exam weighting:
8 assignments, comprising 70% of your grade
Midterm counts for 15% of your grade
Final exam counts for 15% of your grade

Course Website and Submissions

CS121 is on the Caltech Moodle
https: / /courses.caltech.edu/course /view.php2id=3125

2018 enrollment key: truncate

Please enroll in the course as soon as possible!
| will make class announcements via Moodle
You will submit your assignments via Moodle
All assignments will be submitted on the Moodle

Upload a TAR or ZIP archive with a specific structure

Grading Policies

Submit assignments on time!

Late assignments and exams will be penalized!
Up to 1 day (24 hours) late: 10% penalty
Up to 2 days (48 hours) late: 30% penalty
Up to 3 days (72 hours) late: 60% penalty
After 3 days, don’t bother. @

But, extensions are available:
A note from Dean’s Office or Health Center is helpful

You also have 3 “late tokens” to use however you want
Each late token is worth a 24-hour extension
Can’t use late tokens on the final exam without my permission

Database Terminology

Database — an organized collection of information
A very generic term...
Covers flat text-files with simple records...
...all the way up to multi-TB data warehouses!

Some means to query this set of data as a unit, and
usually some way to update it as well

Database Management System (DBMS)
Software that manages databases
Create, modify, query, backup /restore, etc.

Sometimes just “database system”

Before DBMSes Existed...

Typical approach:
Ad-hoc or purpose-built data files

Special-built programs implemented various operations
against the database

Want to perform new operations?

Create new programs to manipulate the data files!
Woant to change the data model?

Update all the programs that access the datal

How to implement transactions¢ Security? Integrity
constraints?

Enter the DBMS

Provide layers of abstraction to isolate users,
developers from database implementation
Physical level: how values are stored/managed on disk
Logical level: specification of records and fields
View level: queries and operations that users can perform
(typically through applications)
Provide general-purpose database capabilities that
specific applications can utilize

Specification of database schemas

Mechanism for querying and manipulating records

Kinds of Databases

Many kinds of databases, based on usage

Amount of data being managed

embedded databases: small, application-specific systems
(e.g. SQLite, BerkeleyDB)

data warehousing: vast quantities of data (e.g. Oracle)

Type/frequency of operations being performed
OLTP: Online Transaction Processing

“Transaction-oriented” operations like buying a product or booking
an airline flight

OLAP: Online Analytical Processing
Storage and analysis of very large amounts of data
e.g. “What are my top selling products in each sales region?”

Data Models

Databases must represent:
the data itself (typically structured in some way)
associations between different data values
optionally, constraints on data values

What kind of data can be modeled?
What kinds of associations can be represented?

The data model specifies:
what data can be stored (and sometimes how it is stored)

associations between different data values
what constraints can be enforced
how to access and manipulate the data

Data Models (2)

This course focuses on the Relational Model

SQL (Structured Query Language) draws heavily from the
relational model

Most database systems use the relational model

Also focuses on the Entity-Relationship Model
Much higher level model than relational model
Useful for modeling abstractions
Very useful for database design!

Not supported by most databases, but used in many
database design tools

Easy to translate into the relational model

History of the Relational Model

Invented by Edgar F. (“Ted”) Codd in early 1970s

Focus was data independence

Previous data models required physical-level design and
implementation

Changes to a database schema were very costly to

applications that accessed the database

IBM, Oracle were first implementers of relational
model (1977)
Usage spread very rapidly through software industry

SQL was a particularly powerful innovation

The Relational Model and SQL

Before we start:
SQL is loosely based on the relational model

Some terms appear in both the relational model
and in SQL...

...but they aren’t exactly the same!

Be careful if you already know some SQL

Don’t assume that similarly named concepts are
identical. They’re notl

Relations

Relations are basically tables of data

Each row represents a record in the relation

A relational database is
a set of relations

Each relation has a unique
name in the database

Each row in the table specifies a relationship between

the values in that row

acct_id | branch_name | balance
A-301 New York 350
A-307 Seattle 275
A-318 Los Angeles 550

The account relation

The account ID “A-307”, branch name “Seattle”, and
balance “275” are all related to each other

Relations and Attributes

Each relation has some number of attributes

Sometimes called “columns”

Each attribute has a domain

Specifies the set of valid values for the attribute

The Clccounf I‘e|C|ﬁ0n: acct_id | branch_name | balance
. A-301 New York 350
3 attributes A-307 | Seattle 275

[' A-31 Los Angel 550
Domain of balance is the set 318 os Angeles

of nonnegative integers account

Domain of branch _name is the set of all valid branch names
in the bank

Tuples and Attributes

Each row is called a tuple

A fixed-size, ordered set of name-value pairs

A tuple variable can refer to any valid tuple in a relation

Each attribute in the tuple has a unique name

Can also refer to attributes by index

Attribute 1 is the first attribute, etc.

Example:

Let tuple variable t refer to first
tuple in account relation

H{balance] = 350
2] = “New York”

acct_id | branch_name | balance
A-301 New York 350
A-307 Seattle 275
A-318 Los Angeles 550

account

Tuples and Relations

A relation is a set of tuples

Each tuple appears exactly once

Note: SQL tables are multisets! (Sometimes called bags.)
If two tuples t; and t, have the same values for all
attributes, then t; and t, are the same tuple (i.e. t; = t,)

The order of tuples in a relation is not relevant

Relation Schemas

Every relation has a schema
Specifies the type information for relations

Multiple relations can have the same schema

A relation schema includes:
an ordered set of attributes
the domain of each attribute

Naming conventions:
Relation names are written as all lowercase
Relation schema’s name is capitalized

For a relation r and relation schema R:
Write r(R) to indicate that the schema of ris R

Schema of account Relation

The relation schema of account is:

Account_schema = (acct_id, branch_name, balance)

To indicate that account has
schema Account _schema:

account(Account_schema)

Important note:

acct_id | branch_name | balance
A-301 New York 350
A-307 Seattle 275
A-318 Los Angeles 550
account

Domains are not stated explicitly in this notation!

Relation Schemas

Relation schemas are ordered sets of attributes
Can use set operations on them

Examples:

Relations r(R) and s(S)

Relation r has schema R
Relation s has schema S

RNS
The set of attributes that R and S have in common
R-S

The set of attributes in R that are not also in S
(And, the attributes are in the same order as R)

KSR

K is some subset of the attributes in relation schema R

Attribute Domains

The relational model constrains attribute domains to
be atomic

Values are indivisible units
Mainly a simplification

Virtually all relational database systems provide non-atomic
data types

Attribute domains may also include the null value
null = the value is unknown or unspecified

null can often complicate things. Generally considered
good practice to avoid wherever reasonable to do so.

Relations and Relation Variables

More formqlly: acct_id | branch_name | balance
account is a relation variable |A301 | New York 350
. . A-307 Seattle 275
A hame associated with a A318 | LosAngeles | 550
specific schema, and a set of
tuples that satisfies that schema The account relation

(sometimes abbreviated “relvar”)

A specific set of tuples with the same schema is called
a relation value (sometimes abbreviated “relval®)

(Formally, this can also be called a relation)

Can be associated with a relation variable

Or, can be generated by applying relational operations
to one or more relation variables

Relations and Relation Variables (2)

Problem:

The term “relation” is often
used in slightly different ways

“Relation” usually means the
collection of tuples

acct_id | branch_name | balance
A-301 New York 350
A-307 Seattle 275
A-318 Los Angeles 550

The account relation

i.e. “relation” usually means “relation value”

It is often used less formally to refer to a relation

variable and its associated relation value

e.g. ‘the account relation” is really a relation variable that holds

a specific relation value

Distinguishing Tuples

Relations are sets of tuples...

No two tuples can have the same values for all
attributes...

But, some tuples might have the same values for some
attributes

Example:

acct_id | branch_name | balance

Some accounts have

A-301 | New York 350

the same balance A-307 | Seattle 275
A-318 Los Angeles 550

Some accounts are at 2319 | New York 20

the same branch A-322 | LosAngeles | 275
account

Keys

Keys are used to distinguish individual tuples

A superkey is a set of attributes that uniquely identifies
tuples in a relation

acct_id | branch_name | balance

£ | A-301 | New York 350

xample: A-307 | Seattle 275

{acct_id} is a superkey A-318 | LosAngeles | 550
A-319 | New York 80

A-322 Los Angeles 275

account

s {acct_id, balance} a superkey?

Yes! Every tuple will have a unique set of values for this
combination of attributes.

Is {branch_name} a superkey?
No. Each branch can have multiple accounts

Superkeys and Candidate Keys

A superkey is a set of attributes that uniquely
identifies tuples in a relation

Adding attributes to a superkey produces another
superkey
If {acct_id} is a superkey, so is {acct_id, balance}

If a set of attributes K € R is a superkey,
so is any superset of K

Not all superkeys are equally useful...

A minimal superkey is called a candidate key
A superkey for which no proper subset is a superkey

For account, only {acct_id} is a candidate key

Primary Keys

A relation might have several candidate keys

In these cases, one candidate key is chosen as the
primary means of uniquely identifying tuples

Called a primary key

Example: customer relation

Candidate keys could be:

cust_id cust_name cust_ssn
{cust_id} 23-652 | Joe Smith 330-25-8822
{cusf_ssn} 15-202 Ellen Jones 221-30-6551

. 23-521 Dave Johnson 005-81-2568
Choose primary key:

{cust_id}

customer

Primary Keys (2)

Keys are a property of the relation schema, not
individual tuples

Applies to all tuples in the relation

Primary key attributes are listed first in relation
schema, and are underlined

Examples:

Account_schema = (acct_id, branch_name, balance)
Customer_schema = (cust_id, cust_name, cust_ssn)

Only indicate primary keys in this notation

Other candidate keys are not specified

Primary Keys (3)

Multiple records cannot have the same values for a
primary key!

...or any candidate key, for that matter...
Example: customer(cust id, cust_name, cust_ssn)

cust_id cust_name cust_ssn
23-652 Joe Smith 330-25-8822
15-202 Ellen Jones 221-30-6551

23-521 Dave Johnson 005-81-2568
X1 15-202 Albert Stevens | 450-22-5869

customer
Two customers cannot have the same ID.

This is an example of an invalid relation
The set of tuples doesn’t satisfy the required constraints

Keys Constrain Relations

Primary keys constrain the set of tuples that can
appear in a relation

Same is true for all superkeys

For a relation r with schema R

If K € R is a superkey then

(Vt, t, € r(R) : 1[K] = 1,[K] : +[R] = 1,[R])

i.e. if two tuple-variables have the same values for the
superkey attributes, then they refer to the same tuple

t,[R] = t,[R] is equivalent to saying t; = t,

Choosing Candidate Keys

Since candidate keys constrain the tuples that can be
stored in a relation...

Attributes that would make good (or bad) candidate keys
depend on what is being modeled

Example: customer name as candidate key?
Very likely that multiple people will have same name

Thus, not a good idea to use it as a candidate key

These constraints motivated by external requirements

Need to understand what we are modeling in the database

Foreign Keys

One relation schema can include the attributes of
another schema’s primary key

Example: depositor relation
Depositor_schema = (cust_id, acct_id)
Associates customers with bank accounts

cust_id and acct_id are both foreign keys

cust_id references the primary key of customer

acct_id references the primary key of account

depositor is the referencing relation

It refers to the customer and account relations

customer and account are the referenced relations

depositor Relation

cust_id cust_name cust_ssn acct_id | branch_name | balance
23-652 330-25-8822 A-301 New York 350
15-202 221-30-6551 A-307 Seattle 275
23-521 005-81-2568 A-318 Los Angeles 550
\.

stomer account
depositor relation references

customer and account cust id | acct id

15-202 | A-301
23-521 A-307

23-652 || A-318

Represents relationships between
customers and their accounts

Example: Joe Smith’s accounts

“Joe Smith” has an account at the “Los Angeles” depositor
branch, with a balance of 550.

Foreign Key Constraints

Tuples in depositor relation specify values for cust_id

customer relation must contain a tuple corresponding to each cust_id
value in depositor

Same is true for acct _id values and account relation

Valid tuples in a relation are also constrained by foreign key
references

Called a foreign-key constraint

Consistency between two dependent relations is called
referential integrity

Every foreign key value must have a corresponding primary key value

Foreign Key Constraints (2)

Given a relation r(R)

A set of attributes K © R is the primary key for R
Another relation s(S) references r

K € S too

(Vt. €s:dt. €r:t[K] = t[K])
Notes:

K is not required to be a candidate key for S, only R

K may also be part of a larger candidate key for S

Primary Key of depositor Relation?

Depositor_schema = (cust_id, acct_id)
If {cust_id} is the primary key:
A customer can only have one account
Each customer’s ID can appear only once in depositor

An account could be owned by multiple customers
If {acct_id} is the primary key:
Each account can be owned by only one customer
Each account ID can appear only once in depositor

Customers could own multiple accounts
If {cust_id, acct_id} is the primary key:
Customers can own multiple accounts

Accounts can be owned by multiple customers

Last option is how most banks really work

cust_id | acct_id
15-202 | A-301
23-521 A-307
23-652 | A-318
depositor

